tính gt của biểu thức:
1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/2016.(1+2+3+...+2016)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)
\(P=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+....+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)
\(P=1+\frac{1}{2}.3+\frac{1}{3}.6+\frac{1}{4}.10+....+\frac{1}{2016}.2033136\)
\(P=1+\frac{3}{2}+4+\frac{5}{2}+....+\frac{2017}{2}\)
\(P=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+....+\frac{2017}{2}\)
\(P=\frac{2+3+4+5+....+2017}{2}=\frac{2035152}{2}=1017576\)
2.Tính giá trị của biểu thức
( 1/2 : 0,5 - 1/4 : 0,25 + 1/8 : 0,125 - 1/10 :0,1 ) : ( 1+2+3+...+2016)
\(\left(\frac{1}{2}:0,5-\frac{1}{4}:0,25+\frac{1}{8}:0,125-\frac{1}{10}:0,1\right):\left(1+2+3+...+2016\right)\\ =\left(1-1+1-1\right):\left(1+2+3+...+2016\right)\\ =0:\left(1+2+3+...+2016\right)=0\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2015.2016.2017}\)
\(A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2017-2015}{2015.2016.2017}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\)
\(2A=\frac{1}{1.2}-\frac{1}{2016.2017}\)
\(A=\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\div2\)
\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)
\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{2016}\left(1+2+...+2016\right)\)\(=1+\dfrac{2.3}{2.2}+\dfrac{3.4}{3.2}+...+\dfrac{2016.2017}{2016.2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)
\(=\dfrac{1}{2}\left(2+3+...+2017\right)\)
Đặt \(A=2+3+...+2017\)
\(=2017+2016+...+2\)
\(\Rightarrow2A=\left(2+2017\right)+\left(3+2016\right)+...+\left(2017+2\right)\) ( 2016 cặp số )
\(\Rightarrow2A=2019+2019+...+2019\) ( 2016 số )
\(\Rightarrow2A=4070304\)
\(\Rightarrow A=2035152\)
\(\Rightarrow P=1017576\)
Vậy...
P= 1+1/2.3+1/3.6+...+1/2016.2033136
P= 1+3/2+2+...+2017/2
P= 2/2+3/2+4/2+...+2017/2
P=\(\dfrac{2+3+4+...+2017}{2}\)
P= \(\dfrac{2035152}{2}\)
P= 1017576