p 6n 5 3n 2 n thuộc N a CMR phân số p là phân số tối giảnb Với giá trị nào của thì phân số p có giá trị lớn nhấtTRẢ lời ĐÚNG mình TICK nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ rằng : phân số 5n+3/3n+2 là phân số tối giản với n thuộc N?
Để phân số 5n+3/3n+2 tối giản với mọi n thuộc N thì ƯCLN của chúng phải bằng 1 và -1.Ta có:
Gọi d là ước chung của (5n + 3) ;( 3n + 2) (d thuộc Z)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d thuộc ( 1; -1)
=> ƯCLN(5n + 3 ; 3n + 2) = 1;-1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
a) \(P=\frac{3n+5}{6n}=\frac{n+2}{6n}+\frac{2n+3}{6n}\)
b) \(P=\frac{3n}{6n}+\frac{5}{6n}=\frac{3}{6}+\frac{5}{6n}\)=> để P lớn nhất 6n phải bé nhất => n = 1
\(GTLN.P=\frac{3}{6}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)
p = (6n+4+1)/(3n+2) = 2 + 1/(3n+2)
3n+2 \(\ge\)3+2 = 5 ( do là số tự nhiên khác 0 )
=> 1/(3n+2) \(\le\)1/5 => p \(\le\)11/5
''='' <=> n = 1
\(a,\)Giả sử phân số P chưa tối giản
\(\Rightarrow6n+5⋮d;3n+2⋮d\)
Từ \(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+4⋮d\)
\(\Rightarrow\left(6n+5\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy p/số trên tối giản
\(b,P=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\)
Để \(P\)đạt Max thì \(\frac{1}{3n+2}\)phải đạt Max
\(\Rightarrow3n+2=1\Leftrightarrow n=-\frac{1}{3}\)
Vậy Max P = 1+1=2<=> n = -1/3
a) \(P=\frac{6n+5}{3n+2}\)là phân số tối giản <=> ƯCLN(6n + 5; 3n + 2) \(\in\){-1;1}
Gọi d là ƯCLN(6n+5;3n + 2)
Ta có : 6n + 5 \(⋮\)d
3n + 2 \(⋮\)d => 2(3n + 2) \(⋮\)d => 6n + 4 \(⋮\)d
=> (6n + 5) - (6n + 4) = 1 \(⋮\)d => d\(\in\){1; -1}
Vậy P là phần số tối giản
b) tự làm
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |