Hình vuông có đường chéo bằng 4cm thì cạnh của nó bằng: *
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vuông có độ dài cạnh là a( cm )
Áp dụng định lý Py – to – go thì độ dài đường chéo của hình vuông là a 2 ( c m )
Do đó với a = 4 thì độ dài đường chéo là 4 2 = 32 ( c m )
Chọn đáp án B.
Hình vuông có độ dài cạnh là a ( cm )
Áp dụng định lý Py – to – go thì độ dài đường chéo của hình vuông là a 2 ( cm )
Do đó với a = 4 thì độ dài đường chéo là 4 2 = 32 ( c m )
Chọn đáp án B.
a)
Gọi đường chéo của hình vuông có độ dài là a.
Áp dụng định lí Pi-ta-go ta có:
a2 = 32 + 32 = 18 suy ra a = √18 = 3√2
Vậy đường chéo của hình vuông đó bằng 3√2 (cm)
b)
Gọi cạnh của hình vuông là a.
Áp dụng định lí Pi-ta-go ta có:
a2 + a2 = 22 ⇒ 2a2 = 4
⇒ a2 = 2 ⇒ a = √2
Vậy cạnh của hình vuông đó bằng √2 (dm).
Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:
Kẻ đường cao CK của tam giác ABC, dễ thấy KB = AB – DC = 6 - 8/3 = 10/3.
Tam giác vuông ABD có D B 2 = A B 2 + A D 2 = 6 2 + 4 2 = 52, từ đó DB = 52 = 2 13 (cm)
Độ dài đường chéo là:
\(\sqrt{2\cdot\dfrac{4}{4}}=\sqrt{2}\left(cm\right)\)
Gọi đường chéo của hình vuông có độ dài là a.
Áp dụng định lí Pi-ta-go ta có:
a2 = 32 + 32 = 18 suy ra a = √18
Vậy đáp án là √18 cm
Gọi 4 đỉnh của hình vuông là A,B,C,D.
Xét tam giác ABC có \(\widehat{B}\)=90o(ABCD là hình vuông)=> tam giác ABC vuông tại B
Theo định lí Pytago, ta có:
AC2=BD2=32+32=18
=>AC=BD=\(\sqrt{18}\)(cm)
=>đpcm
Hok tốt#
C
C