K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

Xét tam giác ABC có:

+ M là trung điểm của AB (gt).

+ N là trung điểm của BC (gt).

\(\Rightarrow\) MN là đường trung bình.

\(\Rightarrow\) MN // AC và MN = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (1)

Xét tam giác ADC có:

+ Q là trung điểm của DA (gt).

+ P là trung điểm của CD (gt).

\(\Rightarrow\) QP là đường trung bình.

\(\Rightarrow\) QP // AC và QP = \(\dfrac{1}{2}\) AC (Tính chất đường trung bình trong tam giác). (2)

Từ (1); (2) \(\Rightarrow\) MN // QP và MN = QP.

Xét tứ giác MNPQ:

+  MN // QP (cmt).

+ MN = QP (cmt).

\(\Rightarrow\) Tứ giác MNPQ là hình bình hành (dhnb).

 

5 tháng 1 2022

ABC là tứ giác à?

9 tháng 6 2017

* Xét tam giác ABC có M và N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác .

Suy ra: MN// AC và

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

* Xét tam giác ACD có P và Q lần lượt là trung điểm của CD và AD nên PQ là đường trung bình của tam giác

Suy ra: PQ // AC và

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Từ (1) và (2) suy ra: MN// PQ và MN = PQ

Do đó, tứ giác MNPQ là hình bình hành.

* Ta có

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Hình bình hành MNPQ có 1 góc vuông nên là hình chữ nhật

Chọn đáp án C

21 tháng 10 2018

A B C D M N P Q

Xét t/g ABD có: AM=BM (gt), AQ=DQ (gt)

=>MQ là đường trung bình của tam giác ABD

=>MQ // BD và MQ = 1/2BD (1)

CM tương tự với t/g CBD ta có: NP // BD và NP = 1/2BD (2)

Từ (1) và (2) => MQ // NP và MQ = NP 

=> MNPQ là hình bình hành (3)

Xét t/g ABC ta có: AM=BM (gt), BN = CN (gt)

=> MN là đg trung bình của t/g ABC

=> MN // AC

Mà AC _|_ BD (gt)

=> MN _|_ BD

Mà NP // BD (cmt)

=> MN _|_ NP (4)

Từ (3) và (4) =>  MNPQ là hình chữ nhật

25 tháng 7 2016

khó waaaaaaaaaaaaaaaaa

25 tháng 7 2016

bài zì mà khó quá đi àaaaaaaaaaaaaaaaa

20 tháng 3 2021

Xét $(O)$ có: $\widehat{ACD}=\widehat{ABD}=90^o$( góc nội tiếp chắn nửa đường tròn)
suy ra $\widehat{ECD}=90^o$
$\widehat{BAC}=\widehat{BDC}$ (các góc nội tiếp cùng chắn cung $BC$)

hay $\widehat{BAE}=\widehat{EDC}(1)$

Xét tứ giác $BEFA$ có: $\widehat{ABE}=\widehat{EFA}=90^o$ (do $EF AD$)

nên $\widehat{ABE}+\widehat{EFA}=180^o$

suy ra tứ giác $BEFA$ nội tiếp 
suy ra $\widehat{EFB}=\widehat{BAE}(2)$ (các góc nội tiếp cùng nhắn $BE$)

Chứng minh tương tự ta có: tứ giác $ECDF$ nội tiếp nên $\widehat{EFC}=\widehat{EDC}(3)$ (các góc nội tiếp cùng chắn cung $EC$)
Từ $(1)(2)(3)$ suy ra $\widehat{EFB}+\widehat{EFC}=\widehat{BAE}+\widehat{EDC}=2.\widehat{EDC}$
hay $\widehat{BFC}=2.\widehat{EDC}$

Lại có: tam giác $ECD$ vuông tại $C$
$M$ là trung điểm $ED$
Nên $EM=MD=CM$
Suy ra tam giác $MCD$ cân tại $M$

nên $\widehat{MCD}=\widehat{MDC}$

Lại có: $\widehat{BMC}$ là góc ngoài tam giác $MCD$ nên 
$\widehat{BMC}=\widehat{MCD}+\widehat{MDC}=2.\widehat{MDC}=2.\widehat{EDC}
Mà $\widehat{BFC}=2.\widehat{EDC}$
nên $\widehat{BMC}=\widehat{BFC}$

suy ra $F;M$ cùng nhìn đoạn $BC$ dưới 1 góc ko đổi
$F;M$ là 2 đỉnh liên tiếp tứ giác $BCMF$

suy ra tứ giác $BCMF$ nội tiếp (Bài toan quỹ tích cung chứa góc)undefined

28 tháng 11 2017

Ta có MNPQ là hình chữ nhật tâm O => M,N,P,Q cùng thuộc (O;OM)

19 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tam giác vuông EFD có:

FM là đường trung tuyến ứng với cạnh huyền CD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 là góc ngoài tại đỉnh M của tam giác FMD nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tứ giác BCMF có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và cùng nhìn cạnh BF dưới một góc bằng nhau

Suy ra, tứ giác BCMF nội tiếp được.