Tìm số tự nhiên có 2 chữ số, biết rằng số đó gấp 7 lần tổng các chữ số của nó?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab
Mà số đó gấp 7 lần tổng các chữ số của nó
\(\Rightarrow\)ab=7.(a+b)
Ta có:ab=7.(a+b)
10a+b=7a+7b
10a-7a=7b-b
3a=6b(1)
Từ 1 suy ra được a=6;b=3
Vậy số cần tìm là 63
Câu2:
Gọi số cần tìm là ab
Mà số đó gấp 8 lần tổng các chữ số của nó
\(\Rightarrow\)ab=8x(a+b)
Ta có:ab=8x(a+b)
10a+b=8a+8b
10a-8a=8b-b
2a=7b(1)
Từ(1) suy ra a=7;b=2
Vậy số cần tìm là 72
Gọi số đó là ab. (0<a; b <10). Ta có:
1/ Gấp 7 lần: <=> ab=7(a+b) <=> 10a+b=7(a+b) <=> 10a+b=7a+7b
<=> 3a=6b => a=2b => b=1; 2; 3; 4 và a=2; 4; 6; 8
Các số cần tìm là: 21; 42; 63; 84
2/ Gấp 6 lần: <=> ab=6(a+b) <=> 10a+b=6(a+b) <=> 10a+b=6a+6b
<=> 4a=5b => \(a=\frac{5b}{4}\) => b=4 và a=5
Các số cần tìm là: 45
3/ Gấp 6 lần: <=> ab=8(a+b) <=> 10a+b=8(a+b) <=> 10a+b=8a+8b
<=> 2a=7b => \(a=\frac{7b}{2}\) => b=2 và a=7
Các số cần tìm là: 72
4/ Gấp 9 lần: <=> ab=6(a+b) <=> 10a+b=9(a+b) <=> 10a+b=9a+9b
<=> a=8b => b=1 và a=8
Các số cần tìm là: 81
a ) Gọi số đó là ab .Theo đề bài ra ta có : b ) Gọi sô đó là ab .Theo đề bài ra ta có :
ab = 6 x ( a + b ) ab = 7 x ( a + b )
10 x a + b = 6 x a + 6 x b a x 10 + b = 7 x a + 7 x b
10 x a - 6 x a = 6 x b - b 10 x a - 7 x a = 7 x b - b
4 x a = 5 x b 3 x a = 6 x b
=> số đó là 45 => ab = 36
c ) ab = 8 x ( a + b )
a x 10 + b = 8 x a + 8 x b
a x 10 - 8 x a = 8x b - b
2 x a = 7 x b
=> ab = 27
d)
ab = 9 x ( a + b )
a x 10 + b = 9 x a + 9 x b
a x 10 - 9 x a = 9 x b - b
a x 1 = 9 x 8
=>n số đó là 18
Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
a)gọi số đó là :ab
ab = 6 x (a+b)
10a + b= 6a + 6b
4 x a= 5 x b
vậy ab = 54
Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
Em tham khảo tại đây nhé:
Câu hỏi của Tiểu thư họ Nguyễn - Toán lớp 5 - Học toán với OnlineMath
Gọi số đó là \(\overline{ab}\left(a,b< 10;a,b\in N\right)\)
Ta có \(\overline{ab}=2\left(a+b\right)\)
\(\Leftrightarrow10a+b=2a+2b\\ \Leftrightarrow8a=b\)
Vì a,b là các số tự nhiên nhỏ hơn 10 nên \(\left\{{}\begin{matrix}a=1\\b=8\end{matrix}\right.\)
Do đó số cần tìm là \(18\)
Gọi số có 2 chữ số là: ¯¯¯¯¯abab¯
Ta có: ¯¯¯¯¯ab=(a+b).2⇒10a+b=2a+2b⇒8a=bab¯=(a+b).2⇒10a+b=2a+2b⇒8a=b
Vì a,b là các số có 1 chữ số ⇒a=1;b=8⇒a=1;b=8
vậy số cần tìm là 18
Gọi số cần tìm là ab.
Theo đề bài ta có: ab = 7 x (a +b)
a x 10 + b = 7 x a + 7 x b.
3 x a = 6 x b
a = 2 x b
Do đó các số cần tìm là 21; 42; 63; 84
Bài làm:
Gọi số cần tìm là ab.
Theo đề bài ta có: ab = 7 x (a +b)
a x 10 + b = 7 x a + 7 x b.
3 x a = 6 x b
a = 2 x b
Do đó các số cần tìm là 21; 42; 63; 84