Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 2,3,4,5 đều dư 1
Các bạn giải theo cách giải của lớp 4 nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là x ( x khác 1 ; x > 1 )
Vì x chia cho 2,3,4,5 đều dư 1 nên ( x - 1 ) chia hết cho 2,3,4,5
Mà số tự nhiên bé nhất chia hết cho 2,3,4,5 là 60
Vậy x - 1 = 60 suy ra : x = 60 + 1 = 61
Vậy số cần tìm là 61
Ơ Ơ BUỒN CƯỜI
Gọi số cần tìm là a.
a chia 2; 3; 4; 5; 7 dư 1 nên a - 1 chia hết cho 2; 3; 4; 5; 7.
Vì số chia hết cho 4 sẽ chia hết cho 2, Suy ra a -1 = 3 x 4 x 5 x 7 = 420
Vậy a = 420 + 1 = 421.
Đáp số: 421.
Gọi số cần tìm là a
Khi đó a chia 2,3,4,5,6,7 đều dư 1
Nên a - 1 chia hết cho 2,3,4,5,6,7 (a + 1 nhỏ nhất)
=> a - 1 thuộc BCNN (2,3,4,5,6,7)
Mà BCNN(2,3,4,5,6,7) = 420
Nên a - 1 = 420
=> a = 421
Vậy số cần tìm là 421 !
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
gọi a là số tự nhiên nhỏ nhất chia cho 5 dư 3 và chia cho 7 dư 4
=> a-3 chia hết cho 5 & a-4 chia hết cho 7
=> (a-3+5) chia hết cho 5 & (a-4+7) chia hết cho 7
=> (a+2) chia hết cho 5 & ( a+3) chia hết cho 7
=> (a+2+15) chia hết cho 5 & (a+3+14) chia hết cho 7
=> (a+17) chia hết cho 5 & (a+17) chia hết cho 7
=> a+17 thuộc BCNN của cả 5 và 7
Nhận thấy BCNN(5;7) là 35
=> a+17=35
<=> a=18
GỌi số tự nhiên cần tìm là:a
Khi đó ta có: a + 1 chia hết 2;3;4;5;6
=> a + 1 thuộc BCNN(2;3;4;5;6)
=> BCNN(2;3;4;5;6)= 60
=> a + 1 = 60
=> a = 59
1)
SỐ ĐÓ LÀ : 2X3X4X5X6=720:6=120
2)
SỐ ĐÓ LÀ :
120+1=121
3)
SỐ ĐÓ LÀ
120-1=119
4)
SỐ LỚN LÀ
(133-19):(4-1)X4+19=171
Gọi số cần tìm là x
Theo đề, ta có: \(x-1\in BC\left(2;3;4;5\right)\)
hay x=61
Ta có, nếu + 1 vào số đó thì số đó sẽ chia hết cho 2; 3; 7 (hình như là 3)
ta có: 2 = 2 x 1
3 = 1 x 3
7 = 1 x 7
Vậy số đó + 1 là:
3 x 2 x 7 = 42
Số đó là:
42 - 1 = 41
Đ/s:..
\(\Leftrightarrow x-1\in BC\left(2;3;4;5\right)\)
mà x nhỏ nhất
nên x=61