1.Cho đường tròn (0) . Tam giác ABC nội tiếp đường tròn . Các đường cao CF , BE , AD , H là trực tâm của tam giác ABC . Gọi K là điểm đối xứng vs H qua BC . AA' là đường kính a, Chứng minh tứ giác ABKC nội tiếp b, chứng minh EF vuông góc với AO c, gọi I là trung điểm của BC . Chứng minh 3 điểm H , I , A' thẳng hàng d, Gọi G là trọng tâm của tam giác ABC . Chứng minh diện tích AGH = 2 diện tích AGO
2.Trong mặt phẳng tọa độ Oxy cho ngũ giác lồi ABCDE có tọa độ các đỉnh là các số nguyên. Chứng minh tồn tại ít nhất một điểm nằm trong ngũ giác đó có tọa độ là các số nguyên