cho a+b+c=2016 và (1/a+b)+(1/a+b)+(1/a+c)=1/672
tính N=(a/b+c)+(b/c+a)+(c/a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a + c = 2016 -> a = 2016 - [ b + c] ; b = 2016 - [ a + c] ; c = 2016 - [ a - b]
Ta có: S = a/ b + c + b/ a + c + c/a + b
S = 2016 - [ b + c] + 2016 - [ a + c] + 2016 - [ a + b]
S = 2016/ b + c - 1 + 2016/a + c - 1 + 2016/a + b
S = 2016.[ 1/b + c + 1/a + c + 1/a + b] - 3
S = 2016. 1/2016 - 3
S = - 2
Từ \(a+b+c=2016\) và \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{1}{2016}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=2016.\frac{1}{2016}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=1\)
\(\Rightarrow\frac{\left(a+b\right)+c}{a+b}+\frac{\left(a+c\right)+b}{a+c}+\frac{\left(b+c\right)+a}{b+c}=1\)
\(\Rightarrow1+\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}=1\)
\(\Rightarrow\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=-2\)
hay \(P=-2\)
Do a + b + c = 2016 suy ra: \(a=2016-\left(b+c\right);b=2016-\left(c+a\right);c=2016-\left(a+b\right)\)
Do đó:
\(S=\frac{2016-\left(b+c\right)}{b+c}+\frac{2016-\left(c+a\right)}{c+a}+\frac{2016-\left(a+b\right)}{a+b}\)
\(=\frac{2016}{b+c}-1+\frac{2016}{c+a}-1+\frac{2016}{a+b}-1\)
\(=\left(\frac{2016}{b+c}+\frac{2016}{c+a}+\frac{2016}{a+b}\right)-3\)
\(=2016\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=2016.\frac{1}{6+2}-3=249\)
Vậy S = 249
N=(a/b+c)+(b/a+c)+(c/a+b)
N+3=(a/b+c)+1+(b/a+c)+1+(c/a+b)+1
N+3=(a+b+c/b+c)+(a+b+c/a+c)+(a+b+c/a+b)
N+3=(a+b+c)[(1/b+c)+(1/a+c)+(1/b+c)]
N+3=2016.(1/672)
N+3=3
=>N=0
\(N=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow N=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(\Rightarrow N=\left(\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\right)-3\)
\(\Rightarrow N=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(\Rightarrow N=2016.\frac{1}{672}-3=0\)
Vậy N=0
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(\Rightarrow S=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{c+a}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)
\(\Rightarrow S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2016.\frac{1}{90}-3=\frac{97}{5}\)
Vậy....................