Giải phương trình:
a) \(x^2-\left(x+3\right)\left(3x+1\right)=9\).
b) \(x^3+4x+5=0\).
c) \(\left(x+14\right)^3-\left(x+12\right)^3=1352\).
d) \(x^3+\left(x-3\right)^3=\left(2x-3\right)^3\).
e) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=360\).
f) \(x^3+\left(x-2\right)\left(2x+1\right)=8\).
b) Ta có: \(x^3+4x+5=0\)
\(\Leftrightarrow x^3-x+5x+5=0\)
\(\Leftrightarrow x\left(x^2-1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x-1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+5\right)=0\)
mà \(x^2-x+5>0\forall x\)
nên x+1=0
hay x=-1
Vậy: S={-1}
a)x2-(x+3)(3x+1)=9
⇔(x-3)(x+3)-(x+3)(3x+1)=0
⇔x+3=0 hoặc 3x+1=0
1.x+3=0 ⇔x=-3
2.3x+1=0⇔x=-1/3
phương trình có 2 nghiệm x=-3 và x=-1/3