K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2022

\(x^2+y^2+z^2=xy+yz+zx\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Leftrightarrow x=y=z\\ \text{Mà }x+y+z=-3\Leftrightarrow x=y=z=-1\\ \Leftrightarrow B=1-1+1=1\)

(Nó có hơi dài dòng)

Cho 3 số x,y,z thỏa mãn: x/2020=y/2021=z/2022.Chứng minh rằng: (x-z)^3 =

(x-z)^3= (2020 - 2022)^3 = -8

8(x-y)^2.(y-z)= 8(2020 - 2021)^2 . (2021 - 2022) = -8.

Vì (x-z)^3 = -8

 8(x-y)^2.(y-z) = -8

==> (x-z)^3 = 8(x-y)^2.(y-z)

16 tháng 5 2022

Bạn viết ra vở xong chụp mik đc ko 

18 tháng 4 2022

-Ủa lòi đâu ra a,b,c vậy bạn?

18 tháng 4 2022

mình chỉnh lại rồi đó

25 tháng 5 2021

PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Nhận thấy VT\(\ge\)0 với mọi x,y,z

Dấu = xảy ra <=> x=y=z

Thay x=y=z vào pt (2) ta được:

\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)

\(\Rightarrow x=y=z=3\)

Vậy (x;y;z)=(3;3;3)

22 tháng 2 2016

ta có bđt phụ ,,,,,,,,  x2+y2+z2 >= xy+yz+zx

thay vào thôi,,,cái bđt dễ cm mà,,,nhân 2 2 vế rồi dùng tương đương

7 tháng 7 2019

ta có: \(x+y+z=a\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=a^2\)

\(\Rightarrow b+2\left(xy+yz+xz\right)=a^2\Rightarrow xy+yz+xz=\frac{a^2-b}{2}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{c}\Rightarrow c\left(xy+yz+xz\right)=xyz\)

Ta có:\(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)

\(=a\left(b-\frac{a^2-b}{2}\right)+\frac{3c\left(a^2-b\right)}{2}\)