Cho M=\(\frac{2013}{2014}+\frac{2014}{2015}\)
N=\(\frac{2013+2014}{2014+2015}\)
So sánh M và N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)
\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Vậy M>N
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Xét N có:
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta các số hạng của M và N có:
\(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\) (1)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\) (2)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\) (3)
Từ (1);(2);(3) => M > N
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015}\) (1)
\(\frac{2014}{2015}>\frac{2014}{2014+2015}\) (2)
ộng caác bất đẳng thứa (1) và (2) vào vế với vế:
\(\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\Rightarrow A>B\)
Ta có :
\(\frac{n-2013}{n-2014}=1-\frac{2013}{2014}=\frac{1}{2014}\)
\(\frac{n-2014}{n-2015}=1-\frac{2014}{2015}=\frac{1}{2015}\)
Vì \(\frac{1}{2014}>\frac{1}{2015}\Rightarrow\frac{n-2013}{n-2014}<\frac{n-2014}{n-2015}\)
D\(\frac{2013}{2014+2015}+\frac{2014}{2014+2015}\)
Vì \(\frac{2013}{2014}>\frac{2013}{204+2015}\)
và \(\frac{2014}{2015}>\frac{2014}{2014+2015}\)
nên C>D
Ủng hộ mk nha
\(\frac{2013}{2014}+\frac{2014}{2015}=1,999...\)
\(\frac{2013+2014}{2014+2015}=4029\)
nen D>C
Ta có:
\(\frac{2013}{2014}>\frac{2013}{2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\)
\(\Rightarrow M>N\)
Ta có: \(N=\frac{2013+2014}{2014+2015}<1\);
\(M=\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013}{2015}+\frac{2014}{2015}=\frac{4027}{2015}>1\)
\(\Rightarrow A>B\)