Cho tam giác ABC có AB = AC, gọi M là trung điểm của BC. Chứng minh:
a) Tam giác ABM= Tam Giác ACM
b) AM là tia phân giác của góc BAC.
Giúp mình với mai mình thi rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do dó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác
Xét `\triangle AMB` và `\triangle AMC` có:
`{:(AB=AC),(MB=MC),(AM\text{ là cạnh chung}):}}=>`
`=>\triangle AMB =\triangle AMC` (c-c-)
`=>\hat{BAM}=\hat{CAM}`
`=>AM` là tia phân giác của `\hat{BAC}`
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Xét Δ ABM và Δ ACM có:
AB = AC (gt)
AM là cạnh chung
Góc BAM = góc CAM (AM là tia phân giác góc BAC)
⇒ Δ ABM = Δ ACM (c_g_c)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
Suy ra: AB//KC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
a) Xét tam giác ABM là tam giác ACM có :AM chung,gócBAM=CAM,AB=AC =>tg ABM=tg ACM(c.g.c)
b)vì AB=AC=>tg ABC cân =>B=C
c) Xét tg ABC có AM là tia phân giác đồng thời là đường cao
=> AM vuông góc BC
Cho tam giác ABC ,M là trung điểm của BC. Trên tia AM lấy điểm E sao cho M là trung điểm của AE. a) So sánh 2 đoạn thẳng AB và CE. b) CM: AM < AB+AC : 2
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
a) Xét tam giác ABM và tam giác ACM:
+ AM chung.
+ AB = AC (gt).
+ MB = MC (M là trung điểm của BC).
\(\Rightarrow\) Tam giác ABM = Tam giác ACM (c - c - c).
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.Mà AM là trung tuyến (M là trung điểm của BC).\(\Rightarrow\) AM là tia phân giác của góc BAC (Tính chất tam giác cân).