Các bạn giúp mình với !!
Câu 1 :Cho x;y nguyên. Chứng minh rằng : Nếu (6x +11y) chia hết cho 31 thì khi và chỉ khi (x+7y) chia hết cho 31
Câu 2 : Tìm các số abc có 3 chữ số khác nhau. Sao cho 3a+5b=8c
Các bạn giúp mình với. Mình cảm ơn nhiều ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: lx-1l + l4-xl = 3 <=> lx-1l + lx-4l = 3
TH1: Nếu x < 1, ta có: TH2: Nếu 1 < x < 4, ta có: TH3: Nếu x > 4, ta có: 1 - x + 4 - x = 3 x - 1 + 4 - x = 3 x - 1 + x - 4 = 3 <=>5 - 2x = 3 <=> 3 =3 (TM) <=> 2x - 5 = 3
<=> 2x = 5 - 3 = 2 <=> x = 1;2;3;4 <=> 2x = 3 + 5 = 8 <=> x = 1 (TM) < => x = 4(TM) Vậy x = 1;2;3;4.
3/25 x ( 15/7 - 2/7 ) + 3/7 x 1/25
= 3/25 x 13/7 + 3/7 x 1/25
= (3 x 13/7 + 3/7 ) x 1/25
= 42/7 x 1/25
= 6 x 1/25
= 6/25
\(\dfrac{3}{25}\times\dfrac{15}{7}+\dfrac{3}{7}\times\dfrac{1}{25}-\dfrac{2}{7}\times\dfrac{3}{25}\)
\(=\dfrac{3}{25}\times\left(\dfrac{15}{7}-\dfrac{2}{7}\right)+\dfrac{3}{7}\times\dfrac{1}{25}\)
\(=\dfrac{3}{25}\times\dfrac{13}{7}+\dfrac{3}{7}\times\dfrac{1}{25}\)
\(=\dfrac{3\times13}{25\times7}+\dfrac{3\times1}{7\times25}\)
\(=\dfrac{39}{175}+\dfrac{3}{175}\)
\(=\dfrac{39+3}{175}\)
\(=\dfrac{42}{175}\)
\(=\dfrac{6}{25}\)
đầu bài là như này đúng không hả bạn
\(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)\)\(=\frac{3}{4}\)
Ta có :\(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)\)\(=\frac{3}{4}\)
\(\frac{2}{3}:\left(x-1\right)\)\(=\frac{1}{4}\)
\(\left(x-1\right)\)\(=\frac{8}{3}\)
\(x=\frac{11}{3}\)
Vì x chia hết cho 15
=> x thuộc Bội của 15
Vì x chia hết cho 18
=> x thuộc bội của 18
mà x nhỏ nhất.
=> x thuộc Bội chung nhỏ nhất của 15, 18
Ta có :
15 = 3.5
18 = 2.32
=> BCNN( 18; 15 ) = 2. 32 . 5 = 90
Vậy x = 90
15 = 3.5 ; 18 = 2.32
\(\Rightarrow\)x nhỏ nhất và không bằng 0 là: 2.32.5 = 90
Hk tốt
c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)
Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)
\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)
Đế C' nguyên thì a + 1 là ước của 1
\(\Rightarrow a=0\)
\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)
\(\Rightarrow x=\frac{9}{4}\left(l\right)\)
Vậy không có x.
Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks
a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=\frac{1}{3-2\sqrt{x}}\)
Câu b, c tự làm nhé
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x^2-2x\)
\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)
Cho mình sửa lại nhé:
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.