1+2=?
giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/2×2/3×3/4×....×49/50
=(1×2×3×4×...×49)/(2×3×4×...×50)
=1/50
Chắc chắn đúng
Ta có :
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(........\)
\(\frac{1}{20}=\frac{1}{20}\)
Cộng vế với vế ta được :
\(P=\frac{1}{11}+\frac{1}{12}+....+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}\) ( Có 10 số \(\frac{1}{20}\) )
\(\Rightarrow P>\frac{10}{20}=\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
Rồi sao? đề bài?
\(4(x+1)^2-(2x-1)^2-8(x-1)(x+1)=11\)
\(\Leftrightarrow4\left(x^2+2x+1\right)-\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)
\(\Leftrightarrow4x^2+8x+4-4x^2+4x-1-8x^2+8=11\)
\(\Leftrightarrow-8x^2+12x+11=11\)
\(\Leftrightarrow-4x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Ta có:
\(4\left(x+1\right)^2-\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\\ \Leftrightarrow4x^2+8x+4-4x^2+4x-1-8x^2+8=11\\ \Leftrightarrow-8x^2+12x=0\\ \Leftrightarrow-4x\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
Ta có: \(\dfrac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\dfrac{101+\left(100+1\right)\cdot50}{101-\left[100-99+98-97+...+2-1\right]}\)
\(=\dfrac{101\cdot51}{101-1\cdot50}\)
\(=\dfrac{101\cdot51}{101-50}=101\)
ĐK: \(\left\{{}\begin{matrix}x\ne-y\\y\ge\dfrac{3}{2}\end{matrix}\right.\).
\(\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}=1\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}-1=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}-\dfrac{x+y}{x+y}=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y+3-x-y=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y+3=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-\left(2y-3\right)=0\\2x-\sqrt{2y-3}=0\end{matrix}\right..\)
Đặt a = x, b = \(\sqrt{2y-3}\).
Hệ phương trình trở thành: \(\left\{{}\begin{matrix}a-b^2=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\2b^2-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\b\left(2b-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\\left[{}\begin{matrix}b=0\\b=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\left\{{}\begin{matrix}\left[{}\begin{matrix}a=0\\a=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}b=0\\b=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\2y-3=\dfrac{1}{4}\end{matrix}\right.\end{matrix}\right.\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\2y=\dfrac{13}{4}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\y=\dfrac{13}{8}\end{matrix}\right.\end{matrix}\right..\)
Vậy hệ phương trình có nghiệm (x;y) \(\in\) \(\left\{\left(0;\dfrac{3}{2}\right),\left(\dfrac{1}{4};\dfrac{13}{8}\right)\right\}\).
Ta có : \(A=2+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
\(\Rightarrow A=2+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=2+\left(1-\frac{1}{100}\right)\)
\(\Rightarrow A=2+\frac{99}{100}=\frac{299}{100}\)
Ta có : A=\(2+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A=2+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=2+\left(1-\frac{1}{100}\right)\)
\(\Rightarrow A=2+\frac{99}{100}\)
\(\Rightarrow A=\frac{299}{100}\)
Can you k for me,Natsu drangeel!
3 nhó cái cho mk
1+2=3
đúng luôn còn gì :)))