không dùng máy tính chứng tỏ rằng 215216217.218219220 có 17 chữ số. giúp minh với thank you
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì tổng các chữ ssó là 1 nên hàng trăm là 1 và hàng chục và đơn vị là 0
số đó là 100.
số chia hết cho 2,5 có tận cùng là 0 hoặc 5 nên 100 chia hết cho 2.5
3 số tự nhiên liên tiếp sẽ có dạng a;a+1 và a+2
Tổng của 3 số là:a+a+1+a+2=3*a +3=3*(a+1) (chia hết cho 3)
Các số có 3 chữ số bắt đầu từ 100,kết thúc là số 999
=>Số số có 3 chữ số là: (999-100):1 +1=900 số
\(x^2+4y^2+z^2-2x+8y-6x+15=0\)
<=> \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1=0\)
mà \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\)≥0
=> \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)≥1
=> ko có giá trị nào của x,y,z thỏa mãn
\(A=\dfrac{1}{x^2-4x+9}=\dfrac{1}{\left(x-2\right)^2+5}\)
mà (x+2)2≥0
=> (x+2)2+5≥5
=> \(\dfrac{1}{\left(x-2\right)^2+5}\)≤ 1/5
=> Max A = 1/5 dấu ''='' xảy ra khi x=2
\(\sqrt{2}\left(\sqrt{3}+1\right)\)
\(=\sqrt{6}+\sqrt{2}\)
Ta có: \(\left(\sqrt{6}+\sqrt{2}\right)^2=8+4\sqrt{3}\)
Và: \(\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)
Ta thấy: \(8+4\sqrt{3}>7+4\sqrt{3}\)
Hay: \(\sqrt{2}\left(\sqrt{3}+1\right)>\sqrt{3}+2\) (đpcm)
CM bđt theo phương pháp tương đương:
Ta có: \(\sqrt{14}-\sqrt{13}< 2\sqrt{3}-\sqrt{11}\)
<=> \(\sqrt{14}+\sqrt{11}< \sqrt{12}+\sqrt{13}\)
<=> \(14+11+2\sqrt{14.11}< 12+13+2\sqrt{12.13}\)
<=> \(\sqrt{14.11}< \sqrt{12.13}\)
<=> \(14.11< 12.13\)
Ta có: 14.11 = 12.11 + 2.11 = 12.13 - 2.12 + 2.11 = 12.13 - 2(12 - 11) = 12.13 - 2 < 12.13
=> 14.11 < 12.13 (luôn đúng)
=> \(\sqrt{14}-\sqrt{13}< 2\sqrt{3}-\sqrt{11}\)(luôn đúng)
=????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????