chứng minh rằng cos^4a - sin^4a+1=2cos^2a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\tan^2\alpha+1=\frac{\sin^2\alpha}{\cos^2\alpha}+1=\frac{\sin^2\alpha+\cos^2\alpha}{\cos^2\alpha}=\frac{1}{\cos^2\alpha}\)
b) \(\cot^2\alpha+1=\frac{\cos^2\alpha}{\sin^2\alpha}+1=\frac{\cos^2\alpha+\sin^2\alpha}{\sin^2\alpha}=\frac{1}{\sin^2\alpha}\)
c) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)
\(=2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2-1\)
\(sina=\frac{3}{5}\Rightarrow sin^2a=\frac{9}{25}\) ; \(cos^2a=1-\frac{9}{25}=\frac{16}{25}\)
\(A=\frac{cota+tana}{cota-tana}=\frac{sina.cosa\left(cota+tana\right)}{sina.cosa\left(cota-tana\right)}=\frac{cos^2a+sin^2a}{cos^2a-sin^2a}=\frac{1}{cos^2a-sin^2a}=\frac{1}{\frac{16}{25}-\frac{9}{25}}=\frac{25}{7}\)
\(B=\frac{sin^2a-cos^2a}{sin^2a-3cos^2a}=\frac{\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}=\frac{1-cot^2a}{1-3cot^2a}=\frac{1-\left(-\frac{1}{3}\right)^2}{1-3\left(-\frac{1}{3}\right)^2}=\)
\(C_1=sin^2a+cos^2a+cos^2a=1+cos^2a=1+\frac{1}{1+tan^2a}=1+\frac{1}{1+\left(-2\right)^2}\)
\(C_2=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a=1-2cos^2a\)
\(=1-\frac{2}{1+tan^2a}=1-\frac{2}{1+\left(-2\right)^2}\)
chị đã ghi rõ là toán lớp 9 mà em ko biết làm cũng phải thôi :))
A = 2(1 - sin2α)2 - sin4α + sin2α (1-sin2α) + 3sin2α
=2 - 4sin2α + 2sin4α - sin4α + sin2α - sin4α + 3sin2α
= 2
\(A=2\cos^4\alpha-\sin^4\alpha+\sin^2\alpha.\cos^2\alpha+3\sin^4\alpha+3\cos^2\alpha.\sin^2\alpha\)
\(A=2\sin^4\alpha+2\cos^4\alpha+4\sin^2\alpha.\cos^2\alpha\)
\(A=2\left[\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha\right]+4\cos^2\alpha\sin^2\alpha=2\)
\(\cos^4\alpha-\sin^4\alpha+1\\ =\left(\sin^2\alpha+\cos^2\alpha\right)\left(-\sin^2\alpha+\cos^2\alpha\right)+\left(\sin^2\alpha+\cos^2\alpha\right)\\ =-\sin^2\alpha+\cos^2\alpha+\sin^2\alpha+\cos^2\alpha=2\cos^2\alpha\)
\(cos^4a-sin^4a+1=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1\)
\(=cos^2a-sin^2a+1=cos^2a-sin^2a+sin^2a+cos^2a=2cos^2a\)
Vậy ta có đpcm