cho n là số chẵn . Chứng tỏ rằng n3-4n và n3+4n đều chia hết cho 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8
mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6
vậy 8(m-1)m(m+1) chia hết cho 48
\(n^3-4n=n\left(n^2-4\right)=n\left(n-2\right)\left(n+2\right)\)
Vì n chẵn => n - 2 và n + 2 cũng là số chẵn
Có n(n-2)(n+2) chia hết cho 2 và 4
\(\Rightarrow n^3-4n⋮\left(2.4.2\right)=16\)
\(n^3+4n=n^3-n+5n=n\left(n^2-1\right)+5n=\left(n-1\right)n\left(n+1\right)+5n\)
Có \(\left(n-1\right)n\left(n+1\right)⋮2;3;4\)
\(5n⋮2\)
\(\Rightarrow n^3+4n⋮16\)
Gọi n là 2k
\(\Rightarrow n^3-4n=\left(2k\right)^3-4.2k=8k^3-8k=8k\left(k^2-1\right)=8k.\left(k-1\right)\left(k+1\right)\)
Với k chẵn
\(\Rightarrow8k⋮16\Rightarrow8k.\left(k-1\right)\left(k+1\right)⋮16\Rightarrow n^3-4n⋮16\)(1)
Với k lẻ
\(\Rightarrow k-1⋮2\Rightarrow8k\left(k-1\right)⋮16\Rightarrow8k.\left(k-1\right)\left(k+1\right)⋮16\Rightarrow n^3-4n⋮16\)(2)
Từ (1) và (2)
\(\Rightarrow n^3-4n⋮16\)
Tương tự
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
n chẵn => n=2k ( k thuộc N)
\(A=n^3+4n=\left(2k\right)^3+4\left(2k\right)=8k^3+8k=8k\left(k^2+1\right)⋮16\)