Cho tam giác ABC có O là điểm chính giữa của cạnh BC (điểm O chia đoạn thẳng BC thành 2 đoạn thẳng OB,OC bằng nhau).Gọi M là điểm bất kỳ trên cạnh BC sao cho MB<MC.nỐI am,ao.Gọi N là điểm trên cạnh AC sao cho tứ giác AMON là một hình thang có đáy lớn AM và đáy nhỏ ON cho biết I là giao điểm của 2 đường chéo AO và MN.
a) so sánh diện tích hai tam giác AIN và MIO
b) chứng tỏ diên tích tứ giác ABMN và diện tích tam giác MNC bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ tam giác ABC Lấy BC ở phía trên đáy dưới là AC cho dễ vẽ. Nối MA từ B kẻ BE song song với MA cắt CA kéo dài tại E. Ta có BEAM là hình thang. vậy S(MAE)= S(BAM) (vì chung đáy MA và chung chiều cao là hình thang) Vậy S(MAC)+ S(MAE)= S(MCA)+S(EAM) Hay S(MEC)= S(ABC) Xác ddingj trung điểm N của EC . Nối MN ta được đường thẳng cần kẻ. Bài toán đã giải xong. Mình không vẽ hình bạn đọc tự vẽ nhé.
Vẽ tam giác ABC Lấy BC ở phía trên đáy dưới là AC cho dễ vẽ.
Nối MA từ B kẻ BE song song với MA cắt CA kéo dài tại E.
Ta có BEAM là hình thang. vậy S(MAE)= S(BAM) (vì chung đáy MA và chung chiều cao là hình thang)
Vậy S(MAC)+ S(MAE)= S(MCA)+S(EAM)
Hay S(MEC)= S(ABC)
Xác ddingj trung điểm N của EC . Nối MN ta được đường thẳng cần kẻ.
Bài toán đã giải xong. Mình không vẽ hình bạn đọc tự vẽ nhé.
MB < MC => SABM < SACM => Điểm N là giao của đường thẳng d thỏa mãn đề bài với cạnh AC, nằm trong AC. Gọi I là trung điểm AC. Lúc đó SMNC = SBCI . Gọi P, Q tương ứng là hình chiều của I, N trên BC. => IP/NQ = BC/CM = CP/CQ . B, C, I, P cố định => xác định được Q từ đó tìm ra N.
????
Mình không hiểu câu trả lời của bạn Hà Chí Trung cho lắm