Cho tam giác ABC vuông tại A có AB>AC. Tia phân giác của góc B cắt AC tại D. Từ D kẻ DH vuông góc vs CB(H thuộc BC).
a) CM: Tam giác ADB = Tam giác HDB
b) CM: CD>AD
c) Trên tia AC lấy điểm E sao cho AE=AB, đường thẳng vuông góc vs AE tại E cắt tia DH tại K. CM:góc DBK = 45 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét ΔADB và ΔADE có:
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)
AD:cạnh chung
=> ΔADB=ΔADE(c.g.c)
b)Vì: ΔADB=ΔADE(cmt)
=> \(\widehat{ABD}=\widehat{AED};BD=DE\)
Xét ΔDBH và ΔDEK có:
\(\widehat{BHD}=\widehat{EKD}=90^o\left(gt\right)\)
BD=DE(cmt)
\(\widehat{HBD}=\widehat{KED}\left(cmt\right)\)
=>ΔDBH=ΔDEK(cạnh huyền-góc nhọn)
=>BH=EK
Ta có hình vẽ sau:
a/ Xét ΔADB và ΔADE có:
AD: Cạnh chung
\(\widehat{BAD}=\widehat{EAD}\) (gt)
AB = AE (gt)
=> ΔADB = ΔADE (c.g.c) (đpcm)
b/ Vì ΔADB = ΔADE (ý a) => \(\widehat{ABD}=\widehat{AED}\) (2 góc tương ứng)
và DB = DE (2 cạnh tương ứng)
Xét 2Δ vuông: ΔDBH và ΔDEK có:
DB = DE (cmt)
\(\widehat{ABD}=\widehat{AED}\) (cmt)
=> ΔDBH = ΔDEK (cạnh huyền - góc nhọn)
=> BH = EK(2 cạnh tương ứng)(đpcm)
a, Xét hai tam giác vuông ABD và BHD có
BD chung
Góc ABD= HBD ( tia phân giác)
=> Tam giác ABD =BHD ( cạnh huyền góc nhọn)
=> BA=BH
b, Ta có
BA= BH
=> BH=BQ
=> Tam giác BHK= BQK( cạnh huyền - cạnh góc vuông)
=> Góc HBK= QBK
Góc ABD= HBD( cmt)
=> Góc DBK =12ABD12ABD
MÀ góc ABD= 90 độ
=> ABK=45 độ
chúc học giỏi