K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

kẻ đường cao AH vuông góc vs BC(H thuộc BC)

\(sinB=\dfrac{AH}{AB}\Rightarrow AH=66,7\\ sinC=\dfrac{AH}{AC}\Rightarrow AC=68\)

=>đáp án A

AH
Akai Haruma
Giáo viên
28 tháng 2 2021

Lời giải:

$\widehat{C}=180^0-68^012'-34^044'=77^04'$

Áp dụng công thức: \(\frac{AC}{\sin B}=\frac{AB}{\sin C}\)

\(\Leftrightarrow \frac{AC}{\sin 34^044'}=\frac{117}{\sin 77^004'}\Rightarrow AC=68,4\)

Đáp án A. 

NV
26 tháng 12 2022

\(C=180^0-\left(A+B\right)=77^04'\)

Áp dụng định lý hàm sin:

\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{AB.sinB}{sinC}=\dfrac{117.sin34^044'}{sin77^04'}\approx68,4\)

23 tháng 7 2015

a) Tam giac ACD va tam giac ABD co

Goc B = goc C (gt)

AD la canh chung

Goc A1 = Goc A2 ( AD la tia phan giac cua tam giac ABC)

Suy ra tam giac ACD = tam giac ABD (g-c-g)

b) Tam giac ABC can tai A (goc B = goc C)

Suy ra AB = AC

Hinh ban tu ve nhe !

a) Xét ΔADB vuông tại D và ΔADC vuông tại D có 

AB=AC(ΔABC cân tại A)

AD chung

Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)

hình bn tự vẽ nhé!!

b, Ta có \(\widehat{B}=\widehat{C}\left(gt\right)\)

Do đó  \(\Delta ABC\)cân tại A

Suy ra  \(AB=AC\)

a, Xét \(\Delta ABD\)và \(\Delta ADC\)có:

\(\widehat{ABD}=\widehat{ACD}\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

\(\widehat{BAD}=\widehat{CAD}\)( vì AD là tia phân giác của góc BAC)

\(\Rightarrow\Delta ADB=\Delta ADC\left(g-c-g\right)\)

hok tốt!!

Xét tam giác ABC, có: góc B = góc C.
=> tam giác ABC cân tại A.
=> AB = AC.
Xét tam giác ADB và ADC:
Có: góc DAB = góc DAC ( GT ).
AB = AC ( Chứng minh trên ).
góc ABD = góc ACD ( GT ).
=> tam giác ADB = tam giác ADC ( g.c.g ) (đpcm)

Hoặc :

a. Xét ΔADC và ΔADB, có:
^A1 = ^A2 (gt)
^B = ^C (gt)
AB = AC (vì ΔABC cân tại A)
=> ΔADC = ΔADB (g.c.g)

b.
Vì ^B = ^C (gt)
=> ΔABC cân tại A (2 góc đáy bằng nhau)
=> AB = AC (2 cạnh bên)
=> đcpcm
 

12 tháng 10 2022

a: góc ABC=180-70-30=80 độ

góc BAD=80/2=40 độ

góc ADB=180-40-70=70 độ

b: góc IBC+góc ICB=1/2(30+80)=55 độ

=>góc BIC=125 độ

=>góc CID=55 độ