Cho tam giác vuông ABC, \(\widehat{A}=90^o\), \(AH\perp BC\) tại H. \(HD\perp AC\) tại D và \(HE\perp AB\) tại E. M là trung điểm của HC
a) Chứng minh tứ giác AEHD là HCN
b) N là trung điểm của AE, O là giao điểm của AH và DE. Chứng minh M, O, N thẳng hàng
c) Chứng minh \(\Delta MDE\) là tam giác vuông
(answer hết mk sẽ đánh dấu like)
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật