Tìm x biết:
\(\frac{x+2015}{13}\)+\(\frac{x+2015}{14}\)+\(\frac{x+2015}{15}\) = \(\frac{x+2015}{16}\)+\(\frac{x+2015}{17}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(\Rightarrow\frac{x-4}{2015}-\frac{10-2x}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{x-4-\left(10-2x\right)}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{\left(x+2x\right)-\left(4+10\right)}{2015}=\frac{1}{2015}\)
\(\Rightarrow\frac{3x-14}{2015}=\frac{1}{2015}\)
\(\Rightarrow\left(3x-14\right).2015=2015\)
\(\Rightarrow3x-14=1\) ( bớt cả 2 vế đi 2015 lần )
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
\(\frac{x+2015}{x-2015}=\frac{y+2017}{y-2017}\)
\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}=\frac{\left(x+2015\right)-\left(x-2015\right)}{\left(y+2017\right)-\left(y-2017\right)}=\frac{2015}{2017}\)( 1 )
\(\frac{x+2015}{y+2017}=\frac{x-2015}{y-2017}=\frac{\left(x+2015\right)+\left(x-2015\right)}{\left(y+2017\right)+\left(y-2017\right)}=\frac{x}{y}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{y}=\frac{2015}{2017}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\left(\frac{2016}{1}-1\right)+\left(\frac{2017}{2}-1\right)+...+\left(\frac{4030}{2015}-1\right)\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=2015.\left(1+\frac{1}{2}+...+\frac{1}{2015}\right)\)
=> x = 2015
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x+2015=\frac{2016}{1}+\frac{2017}{2}+\frac{2018}{3}+...+\frac{4030}{2015}\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x=\left(\frac{2016}{1}-1\right)+\left(\frac{2017}{2}-1\right)+...+\left(\frac{4030}{2015}-1\right)\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right).x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}=2015.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)\(\Rightarrow x=2015\)