A= ( 1 - 1/3 ) x ( 1 - 1/4 ) x ( 1- 1/5 ) x...x ( 1- 1/99 ) = .....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2/3 . 3/4 . 4/5 ..... 98/99
A = 2 . 3 . 4 ....... 98/3 . 4 . 5 ...... 99
A = 2/99
\(A=\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)\cdot...\cdot\left(1-\frac{1}{99}\right)\)
\(A=\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\)
\(A=\frac{2}{99}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Dấu chấm là nhân
a) \(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\) \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
b) \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\) \(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)
c) Đặt \(C=\frac{4}{5.7}+\frac{4}{7.9}+....+\frac{4}{59.61}\)
\(\Rightarrow\frac{1}{2}C=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\)
\(\Rightarrow\frac{1}{2}C=\frac{1}{5}-\frac{1}{61}=\frac{56}{305}\)
\(\Rightarrow C=\frac{56}{305}:\frac{1}{2}=\frac{112}{305}\)
CHÚC BẠN HỌC TỐT NHA! ĐÚNG THÌ NHA!
\(\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{5}\right)\cdot...\cdot\left(1-\frac{1}{99}\right)\)
\(=\frac{2}{3^{\left(1\right)}}\cdot\frac{3^{\left(1\right)}}{4^{\left(1\right)}}\cdot\frac{4^{\left(1\right)}}{5^{\left(1\right)}}\cdot...\cdot\frac{98^{\left(1\right)}}{99}\)
\(=\frac{2}{99}\)
a: Ta có: \(\left(\dfrac{3}{2}x-\dfrac{1}{5}\right)^2\cdot\left(x^2+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x\cdot\dfrac{3}{2}=\dfrac{1}{5}\)
hay \(x=\dfrac{1}{5}:\dfrac{3}{2}=\dfrac{2}{15}\)
b: Ta có: \(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)
\(\Leftrightarrow x+100=0\)
hay x=-100