K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2022

A

NV
24 tháng 7 2021

Kẻ đường cao BE ứng với CD \(\Rightarrow BE=4\left(cm\right)\)

Trong tam giác vuông BCE ta có:

\(\widehat{EBC}=90^0-\widehat{C}=90^0-45^0=45^0\)

\(\Rightarrow\widehat{EBC}=\widehat{C}\Rightarrow\Delta BCE\) vuông cân tại E

\(\Rightarrow EC=BE=4\left(cm\right)\)

Tứ giác ABED là hình chữ nhật (tứ giác có 3 góc vuông)

\(\Rightarrow AB=DE\)

Ta có:

\(AB+CD=10\left(cm\right)\)

\(\Leftrightarrow AB+DE+EC=10\)

\(\Leftrightarrow2AB+4=10\)

\(\Rightarrow AB=3\left(cm\right)\)

\(\Rightarrow DE=AB=3cm\Rightarrow CD=DE+EC=7\left(cm\right)\)

NV
24 tháng 7 2021

undefined

Bài 2: 

a) Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(AM=AN;AB=AC\right)\)

Do đó: MN//BC(Định lí Ta lét đảo)

Xét tứ giác BMNC có MN//BC(gt)

nên BMNC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

$\widehat{DAC}=\widehat{BAC}-\widehat{BAE}-\widehat{EAD}=90^0-20^0-30^0=40^0$