Cho tam giác ABC có AB=8cmAC=6cm.Trên cạnh AB lấy điểm M sao cho BM=3cm,từ M kẻ MN vuông góc với BC.Gọi D là giao điểm của AC và MN.
a)Tính BC,MN,Snbm/Sabc
b)CM:BAN=BCM
c)DA.DC+BN.BC=BD^2
P/s:Vẽ gíup mk cả hình nữa nak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác vuông AB0 và tam giác vuông ACO
AB=AC( gt )
AO cạnh chung
=> Tam giác ABO = Tam giác ACO (ch-cgv)
=>OB=OC( 2 cạnh tương ứng )
Xét tam giác vuông MBO và tam giác vuông NCO
MB=NC ( gt)
OB=OC (cmt)
=>Tam giác MBO = Tam giác NCO( 2 cgv )
=>OM=ON
=>tam giác NOM cân tại 0
cTa có tam giác NOM cân tại O
Lại có : HOB^=HOC^ (cn câu a)
=.HOM^+MOB^=HON^+NOC^
Mà MOB^=NOC^ (cm câu a)
=>HOM^=HON^
Xét tam giác MEO và tam giác NEO
EO cạnh chung
EOM^=EON^ (cmt)
OM=ON ( cm câu a)
=>Tam giác EOM=tam giác EON ( c-g-c )
=> OEN^=OEM^
Mà OEN^+OEM^=180* (góc bẹt)
=>OEM^=OEN^=180*/2=90* ( đpcm )
a: AC=4cm
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAMN vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AMN}=\widehat{DMC}\)
Do đó: ΔAMN=ΔDMC
Suy ra: MN=MC
hay ΔMNC cân tại M
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ
góc DAH+góc BDA=90độ
góc BAD=góc BDA
=>góc MAD=góc HAD
Xét ΔAHD và ΔAMD có
AH=AM
góc HAD=góc MAD
AD chung
=>ΔAHD=ΔAMD
=>góc AMD=90 độ
Xét ΔAMN vuông tại M và ΔAHC vuông tại H có
AM=AH
góc MAN chung
=>ΔAMN=ΔAHC
=>AN=AC
=>ΔANC cân tại A