Tìm giá trị của x
(9765-2350)x X -827=7348
517x (X+150)=151481
7560:(476-X)=251
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 52% - 4,5% : 3
= 52% - 1,5%
= 50,5%
b, 0,2 x 456 x 6 + 0,12 x 2350 + 30,9 x 3 x 4
(0,2x6) x 456 + 0,12 x 2350 + 30,9 x 12
= 1,2 x 456 + 1,2 x 235 + 1,2 x 309
= 1,2 x ( 456 + 235 + 309)
= 1,2 x ( 691 + 309)
= 1,2 x 1000
= 1 200
Lời giải:
a. $=21222\times 2=42444$
b. $=183829\times 19=3492751$
c. $=1953+47384=49337$
ĐKXĐ : x2-5x khác 0
<=>x.(x-5) khác 0
<=> x khác 0 và x khác 5
a)
\(\frac{x^2-10x+25}{x^2-5x}=0\Rightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\)
<=>x-5=0
<=>x=5
Mà x khác 5 nên không có x nào thỏa mãn phân thức bằng 0
b)\(\frac{x^2-10x+25}{x^2-5x}=\frac{5}{2}\Leftrightarrow\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{5}{2}\Leftrightarrow\frac{x-5}{x}=\frac{5}{2}\Leftrightarrow\frac{2.\left(x-5\right)}{2x}=\frac{5x}{2x}\)
\(\Rightarrow2\left(x-5\right)=5x\Leftrightarrow2x-10=5x\Leftrightarrow-3x=10\Leftrightarrow x=-\frac{10}{3}\)
c) \(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{x-5}{x}=1-\frac{5}{x}\)
Để phân thức trên nguyên thì : 1-5/x là số nguyên
=>5/x là số nguyên
=>x thuộc Ư(5)={1;-1;5;-5}
Mà x khác 5 nên: x={1;-1;-5}
Vậy x={1;-1;-5}
ĐKXĐ:
\(x-1\ne0\text{ và }x\ge0\)
\(x\ne1\text{ và }x\ge0\)
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\left(\frac{2}{x^2-2x+1}\right)\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right):\left(\frac{2}{\left(x-1\right)^2}\right)\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\frac{2}{\left(\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right)^2}\right)\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)