giải pt sau:
1+\(\dfrac{2}{x-2}\)=\(\dfrac{10}{x+3}\)-\(\dfrac{50}{\left(2-x\right)\left(x+3\right)}\) mn giúp vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)
\(\Leftrightarrow x^2+3x-12-10x-30=0\)
\(\Leftrightarrow x^2-7x-42=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};1\right\}\)
ĐKXĐ: ...
\(\left(\dfrac{x-1}{x+2}\right)^2-4\left(\dfrac{x+2}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}=a\\\dfrac{x+2}{x-3}=b\end{matrix}\right.\)
\(\Rightarrow a^2-4b^2+3ab=0\Leftrightarrow\left(a-b\right)\left(a+4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}-\dfrac{x+2}{x-3}=0\\\dfrac{x-1}{x+2}+\dfrac{4x+8}{x-3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)-\left(x+2\right)^2=0\\\left(x-\right)\left(x-3\right)+4\left(x+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(\Leftrightarrow10\left(x^2+\dfrac{1}{x^2}+2\right)+5\left(x^2+\dfrac{1}{x^2}\right)^2-5\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}+2\right)=\left(x-5\right)^2-5\)
\(\Leftrightarrow10\left(x^2+\dfrac{1}{x^2}\right)+20+5\left(x^2+\dfrac{1}{x^2}\right)^2-5\left(x^2+\dfrac{1}{x^2}\right)^2-10\left(x^2+\dfrac{1}{x^2}\right)=\left(x-5\right)^2-5\)
\(\Leftrightarrow\left(x-5\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
Giải phương trình \(1+\dfrac{2}{x-2}=\dfrac{-10}{x+3}+\dfrac{50}{\left(2-x\right)\left(x+3\right)}\)
\(1+\dfrac{2}{x-2}=\dfrac{-10}{x+3}+\dfrac{50}{\left(2-x\right)\left(x+3\right)}\left(ĐK:x\ne2;x\ne-3\right)\)
\(\Leftrightarrow\dfrac{\left(2-x\right)\left(x+3\right)}{\left(2-x\right)\left(x+3\right)}-\dfrac{2}{2-x}=\dfrac{-10\left(2-x\right)}{\left(2-x\right)\left(x+3\right)}+\dfrac{50}{\left(2-x\right)\left(x+3\right)}\)
\(\Leftrightarrow2x+6-x^2-3x-2=-20+10x+50\)
\(\Leftrightarrow-x^2+2x-3x-10x+6-2+20-50=0\)
\(\Leftrightarrow-x^2-11x-26=0\)
\(\Leftrightarrow-\left(x^2+2x-13x+26\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-13\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-2\end{matrix}\right.\)
giải pt sau \(\left(\dfrac{x+1}{x-2}\right)^2-3\left(\dfrac{2x-4}{x-4}\right)^2+\dfrac{x+1}{x-4}=0\)
ĐKXĐ: \(x\ne\left\{2;4\right\}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x+1}{x-2}=a\\\dfrac{x-2}{x-4}=b\end{matrix}\right.\) \(\Rightarrow\dfrac{x+1}{x-4}=ab\)
Phương trình trở thành:
\(a^2-12b^2+ab=0\)
\(\Leftrightarrow a^2+4ab-3ab-12b^2=0\)
\(\Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-2}-\dfrac{3\left(x-2\right)}{x-4}=0\\\dfrac{x+1}{x-2}+\dfrac{4\left(x-2\right)}{x-4}=0\end{matrix}\right.\)
Bạn tự quy đồng và hoàn thành phần còn lại nhé
Ta có: \(\dfrac{\left(x+3\right)\left(x-3\right)}{3}+2=x\left(1-x\right)\)
\(\Leftrightarrow\dfrac{x^2-9}{3}+\dfrac{6}{3}=\dfrac{3x\left(1-x\right)}{3}\)
\(\Leftrightarrow x^2-9+6=3x-3x^2\)
\(\Leftrightarrow x^2-3-3x+3x^2=0\)
\(\Leftrightarrow4x^2-3x-3=0\)
\(\Delta=9-4\cdot4\cdot\left(-3\right)=9+48=57\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{57}}{8}\\x_2=\dfrac{3+\sqrt{57}}{8}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3-\sqrt{57}}{8};\dfrac{3+\sqrt{57}}{8}\right\}\)
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
\(ĐK:x\ne2;x\ne-3\\ PT\Leftrightarrow\left(x-2\right)\left(x+3\right)+2\left(x+3\right)=10\left(x-2\right)+50\\ \Leftrightarrow x^2+x-6+2x+6=10x-20+50\\ \Leftrightarrow x^2-13x-30=0\\ \Leftrightarrow x^2-15x+2x-30=0\\ \Leftrightarrow\left(x-15\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=15\\x=-2\end{matrix}\right.\left(tm\right)\)