Cho tam giác ABC vuông tại A, có AB = AC. Gọi H là trung điểm của BC
a)Chứng minh tam giác AHB = tam giác AHC
b)Chứng minh góc BAH = góc ACH
c)Trên tia đối của tia AH lấy điểm E sao cho EA = BC, trên tia đối của tia AC lấy điểm F sao cho CF = AB. Chứng minh BE = BF và BE vuông góc với BF
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC