Câu 1: Cho hình bình hành ABCD có đường chéo AC>DB. Vẽ CE vuông góc đường thẳng AB tại E, vẽ CF vuông góc đường thẳng AD tại F. Chứng minh
a) Tam giác ABH đồng dạng tam giác ACE
b) Tam giác BHC đồng dạng tam giác CFA
c) Tổng AB.AE+AD.AF không đổi
Câu 2: Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC) và phân giác BE của ABC(E thuộc AC) cắt nhau tại I. Chứng minh:
a) IH.AB=IA.BH
b) BHA đồng dạng BAC => AB^2=BH.BC
c) IH/IA = AE/EC
d) AIE cân
Câu 3: Cho góc nhọn xOy, lần lượt lấy trên Ox các điểm A,B sao cho OA= 3 cm, OB=10cm. Trên Oy lấy lần lượt các điểm C,D sao cho OC=5cm, OD=6cm. Hai đoạn thẳngAD và BC cắt nhau tại I:
a) AOD đồng dạng COB
b) AIB đồng dạng CID
c) IA.ID=IC.IB
d) Cho diện tích ICD= 3 cm^2. Hãy tính diện tích của IAB?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
18 tháng 3 2023
a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có
góc IAB chung
=>ΔAIB đồng dạng vơi ΔAEC
b: ΔAIB đồng dạng với ΔAEC
=>AI/AE=AB/AC
=>AI/AB=AE/AC
=>ΔAIE đồng dạng với ΔABC và AB*AE=AI*AC
c: Xét ΔFAC vuông tại F và ΔICB vuông tại I có
góc FAC=góc ICB
=>ΔFAC đồng dạng với ΔICB
=>AF/IC=CA/CB
=>AF*CB=CA*IC
=>AB*AE+AF*CB=AC^2
9 tháng 3 2023
xét ΔABC và ΔADC có
\(\widehat{ADC}\)=\(\widehat{ABC}\)=90\(^o\)
\(\dfrac{AB}{DC}\)=\(\dfrac{BC}{AD}\)=1
=>ΔABC∼ΔADC(c.g.c)