CHO HÌNH CHÓP SABCD CÓ ĐÁY ABCD LÀ HÌNH BÌNH HÀNH . GỌI M N E LẦN LƯỢT LÀ TRUNG ĐIỂM SA ; SD ; BC .
A/ TÌM GIAO TUYẾN (MBC) VÀ (SAD).
B/ TÌM GIAO ĐIỂM BM VÀ (SAC).
C/ CHỨNG MINH MN// (SBC).
D/NE // (SAB)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mp (ABCD), nối AN kéo dài cắt BC kéo dài tại E
\(\Rightarrow E\in\left(SBC\right)\)
Do AD song song BE, áp dụng Talet:
\(\dfrac{AN}{NE}=\dfrac{ND}{NC}=1\Rightarrow AN=NE\Rightarrow\) N là trung điểm AE
\(\Rightarrow MN\) là đường trung bình tam giác SAE
\(\Rightarrow MN//SE\Rightarrow MN//\left(SBC\right)\)
Đề bài sai òi :v Vẽ hình ra đi bạn.
Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)
Trong tam giác SBD, MN là đường trung bình \(\Rightarrow MN||BD\)
\(\Rightarrow MN||\left(ABCD\right)\)
Trong mp (ABCD), qua E kẻ đường thẳng song song BD cắt BC tại F và cắt AD kéo dài tại G
Trong mp (SAD), nối GN kéo dài cắt SA tại P
Ngũ giác PNEFM là thiết diện của (MNE) và chóp
Ta có: I là trung điểm SA, J là trung điểm SB \(\Rightarrow\) IJ là đường trung bình tam giác SAB
\(\Rightarrow IJ||AB\Rightarrow IJ||CD\)
\(\Rightarrow CD||\left(IJK\right)\)
Do M là trung điểm SA, N là trung điểm AC
\(\Rightarrow\) MN là đường trung bình tam giác SAC
\(\Rightarrow MN||SC\)
Mà \(SC\in\left(SCD\right)\Rightarrow MN||\left(SCD\right)\)
Qua S kẻ đường thẳng d song song AD (và BC)
Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC
\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)