Cách xét khai triển Nhị thức Newton
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π - arcsina + k2π, k ∈ Z.
(x^2+1/x)^4
\(=C^0_4\cdot\left(x^2\right)^4+C^1_4\cdot\left(x^2\right)^3\cdot\left(\dfrac{1}{x}\right)+C^2_4\cdot\left(x^2\right)^2\cdot\left(\dfrac{1}{x}\right)^2+C^3_4\cdot\left(x^2\right)^1\cdot\left(\dfrac{1}{x}\right)^3+C^4_4\cdot\left(x^2\right)^0\cdot\left(\dfrac{1}{x}\right)^4\)
=x^8+4x^5+6x^3+4/x+1/x^4
xi cờ que