Với mọi a,b,c khác nhau đôi một. Cm \(\left(\frac{a+b}{a-b}\right)^2+\left(\frac{b+c}{b-c}\right)^2+\left(\frac{c+a}{c-a}\right)^2\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hoàng Minh Nguyễn - Toán lớp 9 - Học toán với OnlineMath
C/m bằng biến đổi tương đương như sau
\(Σ\frac{a^2}{\left(b-c\right)^2}-2=\left(Σ\frac{a}{b-c}\right)^2-2Σ\frac{ab}{\left(b-c\right)\left(c-a\right)}-2\)
\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}-2\frac{Σ\left(a^2b-a^2c\right)}{╥\left(a-b\right)}-2\)
\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}+2-2\ge0\)
P/s: \(╥\) dùng thay cho ∏ nhé, tại olm đã ít kí hiệu lại ko cho paste nên dùng tạm
Đặt \(x=\frac{a}{b-c};y=\frac{b}{c-a};z=\frac{c}{a-b}\)
\(\Rightarrow xy+yz+zx=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(a-b\right)\left(b-c\right)}=-1\) (Tự CM)
Ta có: \(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\ge2\)
=> ĐPCM
đặt \(\hept{\begin{cases}a+b=x\\b+c=y\\c+a=z\end{cases}}\)
cậu tính A theo x,y,x rồi chứng minh
\(B=\frac{x}{z-y}.\frac{y}{x-z}+\frac{y}{x-z}.\frac{z}{y-x}+\frac{z}{y-x}.\frac{x}{z-y}=-1\)
thì ta có A+2B>=0 -->A>=-2B=2
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{\left(c-a\right)}\ge2\)
Subtract 2 from both sides:
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}-2\ge2-2\)
Refine:
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}\ge0\)
Simplyfy : \(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}:\) \(\frac{4a^2bc-4a^2c^2-4a^2b^2+2a^2b-2a^2c+4ab^2c+4abc^2+2ac^2-2ab^2-4b^2c^2+2b^2c-2bc^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{\left(c-a\right)}-2\)
Convert element to fraction: \(2=\frac{2}{1}\)
\(=\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a^2\right)}{\left(c-a\right)}-\frac{2}{1}\)
Find LCD for: \(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{c-a}-\frac{2}{1}\):
Find the least common denominator 1 (a - b) (b - c) (c- a) = (a - b) (b - c) (c- a)(a - b) (b - c) (c- a)
Sau đó vào đây để xem bài giải tiếp theo nhá! Lười đánh máy tiếp lắm! Có gì mai mốt sử dụng phần mềm đó giải khỏi phải lên đây hỏi.
Step-by-Step Calculator - Symbolab
Đặt \(x=\frac{a+b}{a-b};y=\frac{b+c}{b-c};z=\frac{c+a}{c-a}\)
Ta có : \(x+1=\frac{2a}{a-b};y+1=\frac{2b}{b-c};z+1=\frac{2c}{c-a}\) (1)
\(x-1=\frac{2b}{a-b};y-1=\frac{2c}{b-c};z-1=\frac{2a}{c-a}\) (2)
Từ (1) và (2) => \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
<=> \(\left(xy+x+y+1\right)\left(z+1\right)=\left(xy-x-y+1\right)\left(z-1\right)\)
<=> \(xyz+xz+yz+z+xy+x+y+1=xyz-xz-yz+z-xy+x+y-1\)
<=> \(xy+yz+xz=-1\)
TA có \(\left(x+y+z\right)^2\ge0\Leftrightarrow x^2+y^2+z^2\ge-2\left(xy+yz+xz\right)=2\)
Đặt \(A=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(b-c\right)\left(a-b\right)}=-1\)
\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)^2\ge0\)
\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2+2A\ge0\)
\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge2\)
a)Quy đồng hết lên:v
\(=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{ab\left(a-b\right)-bc\left(a-b+c-a\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(a-b\right)\left(ab-bc\right)+\left(c-a\right)\left(ca-bc\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{b\left(a-b\right)\left(a-c\right)-c\left(a-c\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) (tắt xíu, ráng hiểu:v)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\) (đpcm)
b)(sai thì thôi, cái chỗ đẳng thức xảy ra ý) Đặt \(\frac{a}{b-c}=x;\frac{b}{c-a}=y;\frac{c}{a-b}=z\) (cho nó gọn, viết cho nó lẹ:v) theo câu a) suy ra \(xy+yz+zx=-1\) => \(2xy+2yz+2zx=-2\)
Ta cần chứng minh \(x^2+y^2+z^2\ge2\). Thêm 2xy + 2yz +2zx vào hai vế ta cần chứng minh:
\(x^2+y^2+z^2+2xy+2yz+2zx\ge2+2xy+2yz+2zx\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge2-2=0\) (luôn đúng)
Ta có đpcm. Đẳng thức xảy ra khi \(x+y+z=0\)
dùng hằng đúng