K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

mình mới học lớp 6 thôi

25 tháng 3 2016

Diện tích đáy lớn là: B = 62 = 36 (cm2)

Diện tích đáy nhỏ là: B' = 32 = 9 (cm2)

Thể tích của hình chóp cụt là: \(V=\frac{h}{3}\left(B+B'+\sqrt{BB'}\right)=\frac{4}{3}\left(36+9+\sqrt{36.9}\right)=\frac{4}{3}\left(36+9+3.6\right)=84cm^3\)

25 tháng 3 2016

S A B C D H P A' B' C' D' P' H

Giả sử các cạnh bên của hình chóp  cắt nhau tại S.

Họi H và H lần lượt là tâm đường trong ngoại tiếp các hình vuông ABCD và A'B'C'D'

Thì S, H, H' thẳng hàng và AH, SH'  lần lượt là các đường cao của các hình chóp S.ABCD và S.A'B'C'D'

Gọi P là trung điểm của BC, P' là trung điểm của B'C'

Ta có SP và SP' là các trung đoạn của các hình chóp đều S.ABCD và S.A'B'C'D'

Xét tam giác SHP vuông tại H nên \(SP=\sqrt{SH^2+HP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

Vì B'C' vuông góc với BC và B'C'=1/2B'C' là đường trung bình của tam giác SBC

Do đó : \(SH'=\frac{1}{2}SH=2cm;SP'=\frac{1}{2}SP=2,5cm\)

Thể tích hình chóp S.ABCD là 

\(V_1=\frac{1}{3}SH.BC^2=\frac{1}{3}.4.6^2=48cm^3\)

Thể tích hình chóp S.A'B'C'D' là 

\(V_2=\frac{1}{3}SH'.A'B'^2=\frac{1}{3}.2.3^2=48-6=42cm^3\)

Thể tích của hình chóp cụt là : \(V=V_1-V_2=48-6=42cm^3\)

Diện tích xung quanh của hình chóp cụt là :

\(S_{xq}=AB^2+A'B'^2+4\frac{PP'\left(AB+A'B'\right)}{2}=6^2+3^2+4\frac{2,5\left(6+3\right)}{2}=90cm^2\)

1 tháng 6 2021

\(S_{xq}=\dfrac{4.8}{2}.5=80\left(cm^2\right)\\ S_{tp}=80+8^2=144\left(cm^2\right)\\ V=\dfrac{1}{3}.8^2.3=64\left(cm^3\right)\)

26 tháng 10 2018

25 tháng 6 2019

Xét hình chóp cụt đều ABCD.A'B'C'D' như hình bs.19.

Gọi M, M' thứ tự là trung điểm của BC, B'C'. Khi đó MM' là đường cao của hình thang cân BCC'B'.

Do đó diện tích xung quanh của hình chóp cụt đều là:

S x q  = 4.(a+b)/2.MM′=(2a+2b).MM′

Từ giả thiết ta có:

(2a+2b).MM′= a 2 + b 2  Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O'). Trong mặt phẳng (OMM'O'), kẻ MH ⊥ O'M'. Khi đó: HM' = O'M' – O'H = (b−a)/2

Trong tam giác vuông MHM' ta có: M M ' 2 = M H 2 + H M ' 2 = h + b - a / 2 2  (2)

Từ (1) và (2) suy ra :

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

19 tháng 5 2018

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

23 tháng 9 2019

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

 

8 tháng 11 2017

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

11 tháng 1 2017

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

+ BD = AC = √ (82 + 82) = 8√ 2 ( cm ) ⇒ AO = BO = CO = DO = 4√ 2 ( cm )

Do đó:

+ Diện tích xung quanh của hình chóp đều là Sxq = p.d = p.OB = 16.4√ 2 = 64√ 2 ( cm2 ).

+ Diện tích toàn phần của hình chóp đều là

Stp = Sxq + SABCD = 64√ 2 + 82 = 64 + 64√ 2 ( cm2 )

+ Thể tích của hình chóp đều là V = 1/3S.h = 1/3.SABCD.SO = 1/3.82.10 = 640/3( cm3 )