1.Tìm số dư trong phép chia sau:22014:7
2.Chứng minh rằng: 1/3+2/32+3/33+...+100/3100 < 3/4
3.Cho 100 điểm trên đường tròn.Hỏi có bao nhiêu cung nhận 2 trong 100 điểm trên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Bài 1:
\(2^{81}=\left(2^4\right)^{20}\cdot2=16^{20}\cdot2\)
Mà 16 tận cùng là 6 nên 16^20 tận cùng là 6
Nên 2^81 tận cùng là 2
\(2^{55}=\left(2^4\right)^{13}\cdot2^3=16^{13}\cdot8\)
Mà 16 tận cùng là 6 nên 16^13 tận cùng là 6
Nên 2^55 tận cùng là 8
Vậy 2^81+2^55 tận cùng là 0 , nên chia hết cho 10
Xét d là đường thẳng đi qua ít nhất 3 điểm trong 100 điểm. Giả sử có nhiều hơn 1 điểm nằm ngoài d. Xét 2 điểm A, B nằm ngoài d và 2 điểm C, D thuộc d và C, D không thuộc AB. Khi đó 4 điểm A, B, C, D không thỏa mãn đầu bài. Vậy có nhiều nhất 1 điểm nằm ngoài d. Bỏ điểm đó đi ta có 99 điểm thẳng hàng
Số đướng thẳng vẽ được là:
100 x (100 - 1) : 2 = 4950 (đường)
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)
Vậy \(A< \frac{3}{4}\)