K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/1^2<1 và 1/50^2<1

=> A<1

=> A<2

21 tháng 10 2018

mong các thầy cô giúp em giải bài này với ạ

1 tháng 7 2021

a) (x+9)(x-9)-x2=x2-81-x2=-81

b) (10x-1)(10x+1)-(10x-1)2=100x2-1-100x2+20x-1=20x-2

d) (x-1)(x-2)-(x-2)(x+2)=x2-3x+2-x2+4=-3x+6

10 tháng 10 2016

\(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}+\frac{b}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{a}{-a\left(b^2+b+1\right)}+\frac{b}{-b\left(a^2+a+1\right)}=-\frac{1}{b^2+b+1}-\frac{1}{a^2+a+1}\)

\(=-\frac{a^2+a+1+b^2+b+1}{\left(b^2+b+1\right)\left(a^2+a+1\right)}=-\frac{a^2+b^2+3}{a^2b^2+b^2a+b^2+ba^2+ab+b+a^2+a+1}\)

\(=-\frac{\left(a+b\right)^2-2ab+3}{a^2b^2+ab\left(a+b\right)+a^2+b^2+ab+\left(a+b\right)+1}\)

\(=\frac{2ab-4}{a^2b^2+2ab+\left(a+b\right)^2-2ab+2}=\frac{2\left(ab-2\right)}{a^2b^2+3}\)

27 tháng 11 2018

Thiếu \(a,b\ge0\) nhé 

\(1)\) Cauchy-Schwarz dạng Engel : 

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{9}{2}\) ( đpcm ) 

\(2)\)

\(\frac{\left(a+b\right)\left(a^2+b^2\right)}{4}=\frac{a^3+b^3+ab^2+a^2b}{4}=\frac{a^3+b^3+ab\left(a+b\right)}{4}\)

Cần CM : \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2-ab\right)=\left(a+b\right)\left(a-b\right)^2\ge0\) ( đúng ) 

\(\frac{a^3+b^3+ab\left(a+b\right)}{4}=\frac{2\left(a^3+b^3\right)}{4}=\frac{a^3+b^3}{2}\) ( đpcm ) 

3,4 làm sau