K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

Dễ dàng chứng minh được với  \(a,b>0:\)

\(a^3+b^3\ge ab\left(a+b\right)\)  \(\Leftrightarrow\)  \(\frac{a^3}{b}+b^2\ge a\left(a+b\right)\)  \(\left(1\right)\)

Hoàn toàn tương tự với vòng hoán vị theo bđt trên, ta có:

\(\frac{b^3}{c}+c^2\ge b\left(b+c\right)\)  \(\left(2\right)\)  và  \(\frac{c^3}{a}+a^2\ge c\left(c+a\right)\)  \(\left(3\right)\)

Cộng  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\)  vế theo vế, ta được:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+\left(a^2+b^2+c^2\right)\ge a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)=ab+bc+ca+\left(a^2+b^2+c^2\right)\)

Vì  \(a,b,c>0\)  nên  \(a^2+b^2+c^2\ne0\)

Do đó, trừ cả hai vế của bđt trên cho  \(a^2+b^2+c^2\)  ta được bất đẳng thức cần phải chứng minh, tức là:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)  

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c\)

31 tháng 3 2016

a3/b+b3/c+c3/a=a4/ab+b4/bc+c4/ca>=(a2+b2+c2)2/ab+bc+ac>=(ab+bc+ca)2/ab+bc+ca=ab+bc+ca

dấu đẳng thức xảy ra<=>x=y=z

11 tháng 5 2016

Áp dung tính chất dãy tỉ số bằng nhau :

a^3/b +a^3/b +b^2 \(\ge\)3.a^2

\(\Rightarrow\)2a^3/b +b^2>=3a^2  

Tương tự :  +2b^3/c +c^2 \(\ge\)3.b^2              (1)

                  +2c^3/a +a^2 \(\ge\)3.c^2                (2)

Ta cộng (1) và (2) được :

2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) \(\ge\)3.(a^2+b^2+c^2)  

\(\Rightarrow\)a^3/b+b^3/c+c^3/a \(\ge\)a^2+b^2+c^2  

Mặt khác :   a^2+b^2+c^2 \(\ge\)ab+bc+ca  

Nên :  a^3/b+b^3/c+c^3/a \(\ge\)ab+bc+ca 

Vậy đpcm 

24 tháng 3 2016

a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tương tự
2b^3/c +c^2 >=3.b^2

2c^3/a +a^2 >=3.c^2
cộng lại ta được
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mặt khác
a^2+b^2+c^2>=ab+bc+ca
nên
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dấu = xảy ra khi a=b=c

24 tháng 3 2016

Chúc bạn học tốt ok

7 tháng 7 2019

\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{a^2+ab+bc+ca}=\frac{a-bc}{\left(a+b\right)\left(c+a\right)}\)

\(=\left(a-bc\right)\sqrt{\frac{1}{\left(a+b\right)^2\left(c+a\right)^2}}\le\frac{\frac{a-bc}{\left(a+b\right)^2}+\frac{a-bc}{\left(c+a\right)^2}}{2}=\frac{a-bc}{2\left(a+b\right)^2}+\frac{a-bc}{2\left(c+a\right)^2}\)

Tương tự, ta có: \(\frac{b-ca}{b+ca}\le\frac{b-ca}{2\left(b+c\right)^2}+\frac{b-ca}{2\left(a+b\right)^2}\)\(;\)\(\frac{c-ab}{c+ab}\le\frac{c-ab}{2\left(c+a\right)^2}+\frac{c-ab}{2\left(b+c\right)^2}\)

=> \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{a-bc+b-ca}{2\left(a+b\right)^2}+\frac{b-ca+c-ab}{2\left(b+c\right)^2}+\frac{a-bc+c-ab}{2\left(c+a\right)^2}\)

\(\frac{\left(a+b\right)\left(1-c\right)}{2\left(a+b\right)\left(1-c\right)}+\frac{\left(b+c\right)\left(1-a\right)}{2\left(b+c\right)\left(1-a\right)}+\frac{\left(c+a\right)\left(1-b\right)}{2\left(c+a\right)\left(1-b\right)}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)

NV
25 tháng 3 2019

Biến đổi tương đương:

\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=c\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)

b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)

\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

25 tháng 3 2019

Cám ơn

NV
11 tháng 1 2022

BĐT này không đúng

Ví dụ: với \(a=b=c=0,1\)

19 tháng 3 2019

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}=\frac{\left(ab+bc+ac\right)^2}{ab+bc+ca}=ab+bc+ac\)

\("="\Leftrightarrow a=b=c\)

NV
19 tháng 3 2019

\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(ab+ac+bc\right)^2}{ab+ac+bc}=ab+ac+bc\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

7 tháng 8 2016

Sử dụng bđt Côsi:

\(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2a^2\)

Tương tự và suy ra:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

Thu gọn lại, ta có đpcm.

7 tháng 8 2016

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
Cm tương tự : 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
Cộng vế ta đc  : 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
Mặt khác : 
a^2+b^2+c^2>=ab+bc+ca 
nên
a^3/b+b^3/c+c^3/a >=ab+bc+ca Dấu
 = xảy ra khi a=b=c