cho ( x-y)(y-z)(z-x) = x+y+z . Chứng minh rằng x+y+z chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a+b+c = 0 hoặc a =b=c thì a^3 + b^3 + c^3 = 3abc
Sử dụng tính chất trên ta được :
( x - y )^3 + ( y -z )^3 + ( z - x )^3 = 3( x -y )(y -z )( z -x )
Nếu x ,y, z có cùng số dư khi chia cho 3 =>
x-y , y- z , z - x :/ 3 ( :/ là kí hiệu chia hết )
=> ( x -y )(y -z )( z -x ) :/ 27 => 3( x -y )(y -z )( z -x ) :/ 27
,G/S trong ba số x,y,z ko có số nào có cùng số dư khi chia hết cho 3
=> ( x -y )(y -z )( z -x ) ko chia hết cho 3
Từ G/S => x,y,z chia 3 sẽ có 3 số dư là 0,1,2
=> x+y +z :/3 => ( x -y )(y -z )( z -x ) :/3 ( Vô lý )
Vậy trong ba số x,y,z có hai số có cùng số dư khi chia cho 3 . G/S đó là x,y
=> ( x -y )(y -z )( z -x ) :/3 => x +y +z :/3
1,Nếu x,y :/ 3 => z :/3 => ( x -y )(y -z )( z -x ) :/27 => 3( x -y )(y -z )( z -x ) :/ 27
2,Nếu x,y chia 3 dư 1 , x+y+z :/3 => z chia 3 dư 1 => 3( x -y )(y -z )( z -x ) :/ 27
3,Nếu x,y chia 3 dư 2 , x+y + z :/3 => z chia 3 dư 2 => 3( x -y )(y -z )( z -x ) :/ 27
Tóm lại 3( x -y )(y -z )( z -x ) :/ 27 hay M=(x-y)^3+(y-z)^3+(z-x)^3 :/ 27
tích nha
+) Th1: nếu 3 số x;y;z có cùng số dư khi chia cho 3 => x - y ; y - z; z - x chia hết cho 3
=> Tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 =27
+) Th2: Nếu có 2 trong 3 số có cùng số dư khi chia cho 3. Giả sử hai số đó là x; y.
*Nếu x; y chia cho 3 dư 0 => x - y chia hết cho 3
mà (x - y)(y - z)(z -x) = x+ y + z => x+ y + z chia hết cho 3 => z chia hết cho 3
=> (y - z); (z - x) chia hêtw cho 3 => tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 = 27
* Nếu x; y chia cho 3 dư 1 => x - y chia hết cho 3 => x+ y + z chia hết cho 3. mà x + y chia cho 3 dư 2 => z chia cho 3 dư 1
=> x; y ; z chia cho 3 có cùng số dư => Tích (x - y)(y - z)(z-x) chia hết cho 27
* Tương tự, nếu x; y chia cho 3 dư 2 => z chia cho 3 dư 2 => Tích (x - y)(y - z)(z - x) chia hết cho 27
=> x+ y + z chia hết cho 27
+) Th3: Cả số x; y ; z không có cùng số dư khi cho 3
=> x; y; z chia cho 3 dư là 0;1 ; 2 và các hiệu x - y ; y - z; z - x không chia hết cho 3
x; y ;z chia cho 3 dư 0; 1;2 => x+ y + z chia hết cho 3
tích (x - y)(y - z)(z - x) không chia hết cho 3 mà (x - y)(y - z)(z - x) = x+ y + z
=> Th3 không xảy ra
Vậy ....
ta có:
Từ x/3 = y/4 => x/9 = y/12 (1)
Từ y/3 = z/5 => y/12 = z/20 (2)
Từ (1) và (2) ta có: x/9 = y/12 = z/20 hay 2x/18 = 3y/36 = z/20
Áp dụng TC DTS BN ta có:
2x/18 = 3y/36 = z/20 = (2x - 3y + z )/(18 - 36 + 20) = 6/2 = 3
Từ 2x/18 = 3 => x = 27
Từ 3y/36 = 3 => y = 36
Từ x/20 = 3 => z = 60
cho x,y,z nguyên và (x-y)*(y-z)*(z-x)=m. Chứng minh rằng: (x-y)^3 + (y-z)^3 + (z-x)^3 chia hết cho m
Một bài toán "lừa" người ta:
Đặt \(a=x-y,b=y-z,c=z-x\Rightarrow a+b+c=0\).
Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Trong trường hợp này thì \(a+b+c=0\) nên suy ra đpcm.