Cho tam giác ABC có AB=ACvaf A bé hơn 90°.tia phân giác của góc A cắt BC ở D. a) chứng minh DB=DC B) chứng minh AD vuông góc với BC C) vẽ đoạn thẳng CE vuông góc và =CB(E Khác phía A đối với CB) vẽ đoạn thẳng CF vuông góc và =CA(F khác phía B đối với CA). Chúng minh rằng EA vuông góc với FB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: ΔACB cân tại A
mà AD là tia phân giác
nên AD là đường cao
a/ Xét \(\Delta ABD,\Delta ACD\)có:
\(AD\)(chung)
\(\widehat{BAD}=\widehat{CAD}\)
\(AB=AC\)
\(\Rightarrow\Delta ABD=\Delta ACD\)
\(\Rightarrow DB=DC\)
b/ Theo câu a thì ta có: \(\Rightarrow\Delta ABD=\Delta ACD\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AD\perp BC\)
c/ Gọi M, N là giao điểm của AE với BF và BC
Xét \(\Delta BCF,\Delta ECA\) có
\(CE=CB\)
\(\widehat{ECA}=\widehat{BCF}=90^o+\widehat{BCA}\)
\(CA=CF\)
\(\Rightarrow\Delta BCF=\Delta ECA\)
\(\Rightarrow\widehat{FBC}=\widehat{AEC}\)
Mà \(\widehat{BNM}=\widehat{ENC}\)
\(\Rightarrow\widehat{BMN}=\widehat{ECN}=90^o\)
\(\Rightarrow EA\perp FB\)
a) Ta có: góc DAC= góc DAB + góc BAC
góc BAE= góc EAC+ góc CAB
Mà góc DAB= góc EAC=90 độ
=> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
AD=AB
góc DAC= góc BAE
AC=AE
=> tam giác DAC= tam giác BAE ( c.g.c)
=> DC=BE
Gọi I và H lần lượt là giao điểm của DC với AB và BE
Ta có: góc D+ góc DAH+ góc DHA= góc B+ góc BHI+ góc BIH= 180 độ
Mà góc D= góc B ( tam giác DAC= tam giác BAE) va góc DHA = góc BHI ( hai góc đôi đỉnh)
=> góc DAH= góc BIH
Mà góc DAH=90 độ=> góc BIH=90 độ=> DC vuông góc vs BE
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Suy ra: DB=DC