Cho 1/x + 1/y + 1/z =0 Tính A = yz/x^2 + xz/y^2 + xy/z^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x,y,z\ne0\)
-Ta c/m: -Với \(a+b+c=0\) thì: \(a^3+b^3+c^3-3abc=0\)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\left(đpcm\right)\)
-Quay lại bài toán:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
\(A=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{y^3z^3+z^3x^3+x^3y^3}{x^2y^2z^2}=\dfrac{y^3z^3+z^3x^3+x^3y^3-3x^2y^2z^2+3x^2y^2z^2}{x^2y^2z^2}=\dfrac{\left(xy+yz+zx\right)\left[x^2y^2+y^2z^2+z^2x^2-xyz\left(x+y+z\right)\right]}{x^2y^2z^2}+3=\dfrac{0.\left[x^2y^2+y^2z^2+z^2x^2-xyz\left(x+y+z\right)\right]}{x^2y^2z^2}+3=3\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\hept{\begin{cases}1+\frac{x}{y}+\frac{x}{z}=0\\\frac{y}{x}+1+\frac{y}{z}=0\\\frac{z}{x}+\frac{z}{y}+1=0\end{cases}}\)
\(\Rightarrow\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=-3\)
mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{yz+xz+xy}{xyz}=0\)
\(\Rightarrow yz+xz+xy=0\)
\(\Rightarrow\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(yz+xz+xy\right)=0\)
\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=0\)
\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=3\)
\(\Rightarrow\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=3\)
Học tốt
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
<=> \(\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}.\left(-\frac{1}{z}\right)\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Khi đó: P = \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{xyz}{z^3}+\frac{xyz}{x^3}+\frac{xyz}{y^3}=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)
Với x,y,z khác 0 ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0=>\frac{yz+xz+xy}{xyz}=0=>yz+xz+xy=0\)
Ta luôn có nếu a+b+c=0 thì a3+b3+c3=3abc
Vì xy+yz+zx=0 nên x3y3+y3z3+z3x3=3x2y2z2
Với x3y3+y3z3+z3x3=3x2y2z2 ta có:
\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
Vậy ....
\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)
dung hằng đẳng thức đẹp :\(x^3+y^3+z^3=3xyz\) với \(x+y+z=0\)
\(\Rightarrow xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\frac{3}{xyz}=3\)