Ba đội máy cày, cày ba cánh đồng cùng diện tích. Đội thứ nhất cày xong trong 3 ngày, đội thứ hai cày xong trong 5 ngày, đội thứ ba cày xong trong 6 ngày. Hỏi mỗi đội có bao nhiêu máy, biết rằng đội thứ ba có ít hơn đôị thứ hai 1 máy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số máy đội 1, 2 , 3 lần lượt là: \(x\), \(y\), \(z\) (\(x,y,z\in\) N*)
theo bài ra ta có : 3\(x\) = 5\(y\) = 6\(z\)
5\(y\) = 6\(z\) => \(\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{y-z}{6-5}\) = \(\dfrac{1}{1}\)
\(y=6.1=6\); \(z=5.1=5\); \(x\) = 5\(y:3\) = 5.6:3 = 10
Kết luận đội 1 có 10 máy; đội 2 có 6 máy; đội 3 có 5 máy
Gọi a,b,c lần lượt là số máy cày của đội thứ 1, thứ 2, thứ 3( máy, 0<a,b,c
Theo đề bài ta có
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{5}}=\dfrac{c}{\dfrac{1}{6}}\) và b-c=1
Áp dụng t/c DTSBN ta có
\(\dfrac{a}{\dfrac{1}{3}}=\dfrac{b}{\dfrac{1}{5}}=\dfrac{c}{\dfrac{1}{6}}=\dfrac{a-b}{\dfrac{1}{5}-\dfrac{1}{6}}=\dfrac{1}{\dfrac{1}{30}}=30\)
=> a=\(\dfrac{1}{3}\times30=10\left(tm\right)\)
b=\(\dfrac{1}{5}\times30=6\left(tm\right)\)
c=\(\dfrac{1}{6}\times30=5\left(tm\right)\)
Vậy đội 1 có 10 máy cày, đội hai có 6 máy và đội 3 có 5 máy
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{4}=\dfrac{c-a}{4-3}=3\)
Do đó: a=9; b=6; c=12
Gọi số máy của đội 1;2;3 lần lượt là a,b,c
Theo đề, ta có: 4a=5b=6c
=>a/15=b/12=c/10
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{15}=\dfrac{b}{12}=\dfrac{c}{10}=\dfrac{a-b}{15-12}=1\)
=>a=15; b=12; c=10
Gọi số máy cày của `3` đội lần lượt là `x,y,z (x,y,z \ne 0,`\(\in N\)`\ast )`
Vì năng suất các máy như nhau, cả `3` đội có cùng diện tích cánh đồng cần cày `->` số ngày và số máy là `2` đại lượng tỉ lệ nghịch
`\text {Nghĩa là: 4x=5y=6z hay}` `x/(1/4)=y/(1/5)=z/(1/6)`
Đội thứ nhất hơn đội thứ `2` là `3` ngày
`-> x-y=3`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/(1/4)=y/(1/5)=z/(1/6)=(x-y)/(1/4-1/5)=3/(1/20)=60`
`-> x/(1/4)=y/(1/5)=z/(1/6)=60`
`-> x=60*1/4=15, y=60*1/5=12, z=60*1/6=10`
Vậy, số máy của `3` đội lần lượt là `\text {15 máy, 12 máy, 10 máy}`
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{b-c}{6-5}=1\)
Do đó: a=10; b=6; c=5