Cho tam giác ABC có góc B < 60độ. phân giác AD.
A,chứng minh rằng AD<AB;
B,gọi AM là phân giác của tam giác ABC. chứng minh rằng BC>4DM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC
nên AD⊥BC
b: Ta có: AE+BE=AB
AF+FC=AC
mà BE=CF
và AB=AC
nên AE=AF
Xét ΔAED và ΔAFD có
AE=AF
\(\widehat{EAD}=\widehat{FAD}\)
AD chung
Do đó: ΔAED=ΔAFD
Suy ra: \(\widehat{EDA}=\widehat{FDA}\)
hay DA là tia phân giác của \(\widehat{EDF}\)
2. \(\Delta ABC\)có AB=AC \(\Rightarrow\Delta ABC\)cân.
AD là phân giác \(\Delta ABC\)mà \(\Delta ABC\)cân.
\(\Rightarrow AD\)l là đường trung trực \(\Delta ABC\)..
\(\Rightarrow AD\)là đường cao \(\Delta ABC\)..
\(\Leftrightarrow AD\perp BC\).
Ta dễ dàng tính được ngay MABˆMAB^=BAOˆBAO^(dựa vào tia phân giác của góc BAC và góc ngoài của góc đó)
Xét tam giác ABM và tam giác ABO có:
BA là cạnh chung
MABˆMAB^=BAOˆBAO^
MBAˆMBA^=ABOˆABO^(gt)
=>tam giác ABM=tam giác ABO(g.c.g)
=>AM=AO.
Ta cũng dễ dàng tính được OACˆOAC^=CANˆCAN^(dựa vào tia phân giác của góc BAC và góc ngoài của góc đó)
Xét tam giác COA và tam giác CNA có:
AC là cạnh chung
OACˆOAC^=CANˆCAN^(c/m trên)
OACˆOAC^=ACNˆACN^(gt)
=>Tam giác COA=tam giác CNA(g.c.g)
=>AO=AN
Từ trên =>AN=AM
b)Ta Sẽ tính từ các kết luận trên được BN là trung trực của MO=>MN=NO
Tương tự trên cũng c/m được MC là trung trực của ON=>MO=MN
=>MN=MO=NO
=>Tam giác MON là tam giác đều.
a) Xét tam giác ABC có \(\widehat{B}+\widehat{C}=60^o\)nên \(\widehat{A}=120^o\)
Do AD là tia phân giác nên \(\widehat{A}_1=\widehat{A_2}=\widehat{A}_3=\widehat{A}_4=60^o\)
tam giác ABM = tam giác ABO ( g.c.g )
suy ra AM = AO
tam giác ACN = tam giác ACO ( g.c.g )
suy ra AN = AO
suy ra AM = AN
b) tam giác AOM = tam giác AON ( c.g.c ) \(\Rightarrow\)OM = ON ( 1 )
tam giác AOM = tam giác ANM ( c.g.c ) \(\Rightarrow\)OM = MN ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : OM = ON = MN
do đó tam giác MON đều
Em tự vẽ hình nhé
a) Xét \(\Delta BED\) và \(\Delta CFD\) có:
\(\widehat{BED}=\widehat{CFD}=90^0\);
\(\widehat{BDE}=\widehat{CDF}\) (đối đỉnh)
\(\Rightarrow\Delta BED\sim\Delta CFD\) (g.g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{AEB}=\widehat{AFC\:}=90^0\);
\(\widehat{BAE}=\widehat{CAF}\) (tính chất phân giác)
\(\Rightarrow\Delta ABE\sim\Delta ACF\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\)
c) Do \(BE//FC\) (cùng vuông góc \(AD\))
\(\Rightarrow\dfrac{SB}{SF}=\dfrac{BE}{FC}\) mà \(\dfrac{BE}{FC}=\dfrac{BD}{CD}\) (do \(\Delta BED\sim\Delta CFD\))
Lại có \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (tính chất tia phân giác); \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\) (câu b)
\(\Rightarrow\dfrac{SB}{SF}=\dfrac{AE}{AF}\Rightarrow SA//BE\) (ĐL Ta-let đảo)
\(\Rightarrow SA//CF\Rightarrow SA\perp AF\)