K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

Đặt \(\sqrt{x-2013}=a\left(a>0\right)\)

\(\sqrt{y-2014}=b\left(b>0\right)\)

\(\sqrt{z-2015}=c\left(c>0\right)\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

<=> \(\frac{a-1}{a^2}-\frac{1}{4}+\frac{b-1}{b^2}-\frac{1}{4}+\frac{c-1}{c^2}-\frac{1}{4}=0\)

<=> \(\frac{4a-4-a^2}{4.a^2}+\frac{4b-4-b^2}{4b^2}+\frac{4c-4+c^2}{4c^2}=0\)

<=>\(\frac{-\left(a^2-4a+4\right)}{4a^2}-\frac{b^2-4b+4}{4b^2}-\frac{c^2-4c+4}{4c^2}=0\)

<=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}=0\).

\(\frac{\left(a-2\right)^2}{4a^2}\ge0\forall a>0\)

\(\frac{\left(b-2\right)^2}{4b^2}\ge0\forall b>0\)

\(\frac{\left(c-2\right)^2}{4c^2}\ge0\forall c>0\)

=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}\ge0\) với moi a,b,c >0

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}\sqrt{x-2013}=2\\\sqrt{y-2014}=2\\\sqrt{z-2015}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x-2013=4\\y-2014=4\\z-2015=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)(t/m)

Vậy \(\left(x,y,z\right)\in\left\{\left(2017,2018,2019\right)\right\}\)

1 tháng 9 2019

ko bt

13 tháng 10 2015

Mình có thể giúp bạn bài 2 như sau, thủ thuật vô cùng đơn giản :

Ta có : 20162-2015= (2016-2015).(2015+2016) = 2015+2016. Tương tự với các số khác, ta có :

A = 2016+2015+2014+2013+...+2+1 = 2016.2017:2=2033136

ok ?

NV
13 tháng 6 2020

c/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

13 tháng 6 2020

aaa là \(\sqrt{x+3}\) cháu gõ lộn

4 tháng 10 2020

Đặt \(\sqrt{x-2014}=a;\sqrt{y-2015}=b;\sqrt{z=2016}=c\)(với a,b,c>0). Khi đó pt trở thành: 

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)\(\Leftrightarrow\left(\frac{1}{4}-\frac{1}{a}+\frac{1}{a^2}\right)+\left(\frac{1}{4}-\frac{1}{b}+\frac{1}{b^2}\right)+\left(\frac{1}{4}-\frac{1}{c}+\frac{1}{c^2}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{a}\right)^2+\left(\frac{1}{2}-\frac{1}{b}\right)^2+\left(\frac{1}{2}-\frac{1}{c}\right)^2=0\Leftrightarrow a=b=c=2\)

\(\Rightarrow x=2018;y=2019;z=2020\)

4 tháng 10 2020

\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)

\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}-\left(\frac{1}{x-2014+y-2015+z-2016}\right)=\frac{3}{4}\)

\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}+0=\frac{3}{4}\)

\(\frac{\sqrt{x}-\sqrt{2014}}{x-2014}+\frac{\sqrt{y}-\sqrt{2015}}{y-2015}+\frac{\sqrt{z}-\sqrt{2016}}{z-2016}=\frac{3}{4}\)

\(x=2018,y=2019,z=2020\)

22 tháng 6 2016

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}=.\)

\(\frac{2-1}{1+\sqrt{2}}+\frac{3-2}{\sqrt{2}+\sqrt{3}}+\frac{4-3}{\sqrt{3}+\sqrt{4}}+...+\frac{2016-2015}{\sqrt{2015}+\sqrt{2016}}=.\)

\(\frac{\left(\sqrt{2}\right)^2-1}{1+\sqrt{2}}+\frac{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}{\sqrt{2}+\sqrt{3}}+\frac{\left(\sqrt{4}\right)^2-\left(\sqrt{3}\right)^2}{\sqrt{3}+\sqrt{4}}+...+\frac{\left(\sqrt{2016}\right)^2-\left(\sqrt{2015}\right)^2}{\sqrt{2015}+\sqrt{2016}}=.\)

\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{1+\sqrt{2}}+\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}+\frac{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}{\sqrt{3}+\sqrt{4}}+...=.\)

\(=-1+\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2016}-\sqrt{2015}\)

\(=\sqrt{2016}-1\). đpcm

22 tháng 6 2016

\(\frac{3}{2}\sqrt{4x-8}-9\sqrt{\frac{x-2}{81}}=6\)

đkxđ x>=2,x>0

\(\frac{3}{2}\sqrt{4\left(x-2\right)}-9\sqrt{\frac{x-2}{81}}=6\)

đặt t=x-2

\(\frac{3}{2}\sqrt{4t}-9\sqrt{\frac{t}{81}}=6\)

\(\frac{3}{2}.2\sqrt{t}-9\frac{\sqrt{t}}{9}=6\)

\(3\sqrt{t}-\sqrt{t}=6\)

\(2\sqrt{t}=6\)

\(\sqrt{t}=3=>t=9\)

thế t vào x-2 ta được 

x-2=9<=> x=11 (thỏa)

S={11}