Tính:
N = \(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+.....+\frac{2006^2}{2005.2007}\)
Các bạn ơi giải nhanh nhanh hộ mk nhé! *-* *.* *.* *-*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+............+\frac{1}{18.19.20}\)
=\(\frac{2}{1.2.3.2}+\frac{2}{2.3.4.2}+............+\frac{2}{18.19.20.2}\)
=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}............+\frac{1}{18.19}-\frac{1}{19.20}\)
=\(\frac{1}{1.2}-\frac{1}{19.20}\)
=\(\frac{189}{380}\)
\(=1-\left(\frac{2}{1.3}-\frac{2}{3.5}-...-\frac{2}{2005-2007}\right)\)
\(=1-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)
\(=1-\left[1+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{5}+\frac{1}{5}\right)+...+\left(-\frac{1}{2005}+\frac{1}{2005}\right)-\frac{1}{2007}\right]\)
\(=1-\left(1+0+0+...+0-\frac{1}{2007}\right)\)
\(=1-\left(1-\frac{1}{2007}\right)\)
\(=1-1+\frac{1}{2007}\)
\(=0+\frac{1}{2007}\)
\(=\frac{1}{2007}\)
Ai thấy tớ đúng k nha
Đặt A = \(1-\frac{2}{1.3}-\frac{2}{3.5}-.....-\frac{2}{2005.2007}\)
= \(1-\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{2005.2007}\right)\)
=\(1-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2005}-\frac{1}{2007}\right)\)
= \(1-\left(1-\frac{1}{2017}\right)\)
=\(1-1+\frac{1}{2017}\)
=\(0+\frac{1}{2017}\)
=\(\frac{1}{2017}\)
=>\(T=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{98^2}{97.99}.\frac{99^2}{98.100}\)
=>\(T=\frac{2^2.3^2.4^2...98^2.99^2}{1.3.2.4.3.5...97.99.98.100}\)
Trông thì khó vậy nhưng thực ra ko khó đâu, bạn chỉ việc rút gọn từ trên tử xuống dưới mẫu là xong
=>\(T=\frac{2.99}{1.100}=\frac{99}{50}=1\frac{49}{50}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{3.5}....\frac{98.98}{97.99}.\frac{99.99}{98.100}\)
\(=\frac{2.3.4....98.99}{1.3.5...97.98}.\frac{2.3.4....98.99}{3.5.7...99.100}\)
rút gọn đi có :
\(\frac{99}{1}.\frac{2}{100}=99.\frac{1}{50}=\frac{99}{50}\)
cho x chạy từ 2 đến 20, công thức X^2/(x-1)(x+1) tổng là: 16549/840
\(A=\frac{2^2}{1.3}\cdot\frac{3^2}{2.4}....\frac{999^2}{998.1000}\)
\(A=\frac{2^2.3^2....999^2}{1.3.2.4.998.100}=\frac{\left(2.3.....999\right)\left(2.3....999\right)}{\left(1.2....998\right)\left(3.4....1000\right)}\)
\(A=999\cdot\frac{1}{500}=\frac{999}{500}\)( khúc này mk làm tắt, bn bỏ dấu ở trên rồi bỏ từng tử)
=?????????????????????????????????????????????????????????????????????????????????????????????????????????????????