D= 1/1.5+1/5.9+1/9.13+…+1/101.103
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{97.101}\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\frac{100}{101}\)
\(=\frac{25}{101}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(A=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{1}{93.97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\frac{96}{97}=\frac{24}{97}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(A=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{1}{93.97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\frac{96}{97}=\frac{24}{97}\)
bạn sửa số cuối tử là 4 nhé
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{401}-\dfrac{1}{405}=1-\dfrac{1}{405}=\dfrac{404}{405}\)
\(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{401.405}\\ =1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{401}-\dfrac{1}{405}\\ =1-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-...-\left(\dfrac{1}{401}-\dfrac{1}{401}\right)-\dfrac{1}{405}\\ =1-0-0-....-0-\dfrac{1}{405}\\ =1-\dfrac{1}{405}\\ =\dfrac{404}{405}\)
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\)
\(=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\frac{44}{45}\)
\(=\frac{11}{45}\)
Đặt \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\) là A.
Ta có:
\(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\)
\(4A=4\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\right)\)
\(4A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\)
\(4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\)
\(4A=1-\frac{1}{45}\)
\(4A=\frac{44}{45}\)
\(A=\frac{44}{45}:4\)
\(A=\frac{11}{45}\)
Vậy \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}=\frac{11}{45}\)
a) \(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+\frac{1}{8\cdot10}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{5}=\frac{2}{10}=\frac{1}{5}\)
b) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}\)
\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}\)
\(=1-\frac{1}{17}=\frac{16}{17}\)
hok tốt ...
a)\(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+\frac{1}{8\cdot10}\)
\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+\frac{2}{8\cdot10}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(A=\frac{2}{5}\cdot\frac{1}{2}=\frac{1}{5}\)
b)\(B=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}=1-\frac{1}{17}=\frac{16}{17}\)
Sửa đề: 3x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=4153x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=415
a) Ta có: 3x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=4153x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=415
⇔3x4(41⋅5+45⋅9+49⋅13+...+481⋅85)=415⇔3x4(41⋅5+45⋅9+49⋅13+...+481⋅85)=415
⇔x⋅34(1−15+15−19+19−113+...+181−185)=415⇔x⋅34(1−15+15−19+19−113+...+181−185)=415
⇔x⋅34(1−185)=415⇔x⋅34(1−185)=415
⇔x⋅6385=415⇔x⋅6385=415
hay x=68189x=68189
Vậy: x=68189
Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)
hay \(x=\dfrac{68}{189}\)
Vậy: \(x=\dfrac{68}{189}\)
1/1.5+/5.9+1/9.13..........+1/101.103
=1-1/5+1/5-1/7+1/9-1/13.........+1/101-1/103
=1-1/103
=102/103
XIN 5 TÍCH VÌ MẤT 5 PHÚT
OK