K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2016

2x-5 = 0 

=>x = 5/2

3y+4 = 0

=>y=-4/3

14 tháng 8 2016

Vì \(\left(x-3\right)^{2012}\ge0\)

\(\left(3y-12\right)^{2014}\ge0\Rightarrow\)\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\Rightarrow\)\(\hept{\begin{cases}3y-12=0\\x-3=0\end{cases}}\)\(\hept{\begin{cases}y=4\\x=3\end{cases}}\)

Vậy cặp( x,y) cần tìm là (3,4)

14 tháng 8 2016

2 số hạng đều có số mũ chẵn nên chúng luôn lớn hơn hoặc=0

Vậy ta suy ra được cả 2 số đều bằng 0

Có (x-3)2012=0  =>x-3=0  =>x=3

Có ( 3y-12)2014=0  =>3y-12=0   =>3y=12  =>y=4

Vậy x=3, y=4

5 tháng 10 2015

ta co1:(x-3)^2012+(3y-12)^2014 > 0 với mọi x;y

mà (x-3)^2012+(3y-12)^2014 < 0(theo đề bài)

=>(x-3)^2012+(3y-12)^2014 =0
=>(x-3)^2012=0;(3y-12)^2014=0

=>x=3;y=4


 

22 tháng 10 2015

Ta thấy:\(\left(x-3\right)^{2012}=\left(\left(x-3\right)^{1006}\right)^2\ge0\)

\(\left(3y-12\right)^{2014}=\left(\left(3y-12\right)^{1007}\right)^2\ge0\)

=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\)

mà \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\)

=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}=0\)

=>\(\left(x-3\right)^{2012}=0=>x-3=0=>x=3\)

\(\left(3y-12\right)^{2014}=0=>3y-12=0=>3y=12=>y=4\)

Vậy x=3,y=4

3 tháng 3 2019

\(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\le0\)

Vì \(\left(2x-y+7\right)^{2012}\ge0\forall x;y\)và \(\left|x-3\right|\ge0\Leftrightarrow\left|x-3\right|^{2013}\ge0\forall x\)

\(\Rightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)

Dấy "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+7=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=3\end{cases}}}\)

Vậy....

1 tháng 2 2016

(2x-5)^2008 > 0

(3y+4)^2010 > 0

=>(2x-5)^2008+(3y+4)^2010>0

mà theo đề:(2x-5)^2008+(3y+4)^2010 < 0

=>(2x-5)^2008=(3y+4)^2010=0

+)(2x-5)^2008=0=>2x=5=>x=5/2

+)(3y+4)^2010=0=>3y=-4=>y=-4/3

Vậy...

1 tháng 2 2016

vì 2008và 2010 chẵn nên (2x-5)^2008 và(3y+4)^2010> hoac = 0Vậy=0

x=5/2 và y =-4/3