tìm gtln của : A= \(a^2+b^2+c^2+ab+bc+ac\)với a+b+c=6 và \(0\le a,b,c\le4\)
cần loi giai nha ket qua minh cung bit
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
we had abc+(4-a)(4-b)(4-c)\(\ge0\). khai triển ta có \(ab+bc+ca\ge8\)( maybe)
\(P=\left(a+b+c\right)^2-\left(ab+bc+ca\right)\le6^2-8=28\)
Dấu = xảy ra (a,b,c)~(0;2;4) và các hoán vị
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*
b)Từ \(a+b+c=6\Rightarrow\left(a+b+c\right)^2=36\)
\(\Rightarrow36=a^2+b^2+c^2+2\left(ab+bc+ca\right)=P+ab+bc+ca\)
\(\Rightarrow P=36-ab-bc-ca\). Cần tìm \(GTNN\) của \(ab+bc+ca\)
Không mất tính tổng quát giả sử \(a=max\left\{a,b,c\right\}\)
\(\Rightarrow a+b+c=6\le3a\Rightarrow2\le a\le4\). Lại có:
\(ab+bc+ca\ge ab+ac=a\left(b+c\right)=a\left(6-a\right)\ge8\)
Suy ra GTNN của \(ab+bc+ca=8\Leftrightarrow\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
Vậy GTLNP là \(36-8=28\) khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)