K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

Gọi O là tâm của hình vuông ABCD.

● Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

● ΔSAO vuông tại A Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) 

a: (SBD) giao (ABCD)=BD

AB vuông góc BD

SB vuông góc BD

=>góc cần tìm là góc SBA

5 tháng 6 2018

Chọn C

Vì SA ⊥ (ABCD) nên góc giữa đường thẳng SD và mặt phẳng (ABCD) là góc  S D A ^

Tam giác SAD vuông tại A nên 

21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

10 tháng 9 2019

10 tháng 5 2017

Chọn C.

Phương pháp: Muốn xác định góc giữa hai mặt phẳng ta thực hiện các bước sau:

Xác định giao tuyến của hai mặt phẳng đó.

Lấy 1 điểm nằm trên giao tuyến.

Dựng 2 đường thẳng lần lượt nằm trong hai mặt phẳng đi qua điểm và vuông góc với giao tuyến.

Góc giữa hai đường thẳng chính là góc giữa hai mặt phẳng.

Cách giải: Gọi O là giao điểm của AC và BD.

27 tháng 5 2018

Chọn C

30 tháng 8 2017

Đáp án A

Ta có: B là hình chiếu của B lên  (ABCD)

A là hình chiếu của S lên (ABCD)

Suy ra góc tạo bởi (ABCD)  là góc  φ = S B A ^

 

3 tháng 12 2019

Chọn B

Để cho gọn ta chọn  a =1

Chọn hệ trục tọa độ  sao cho A = O(0;0;0) và B(1;0;0), D(0;1;0) S(0;0;x)  với x = SA >0

Suy ra C(1;1;0)

=> VTPT của mặt phẳng (SCD) là 

=> VTPT của mặt phẳng (SBC) là 

Từ giả thiết bài toán, ta có