Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=a, SA vuông góc với đáy. Xác định góc giữa các mặt phẳng : (AHK) và (ABCD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm của hình vuông ABCD.
● Ta có:
● ΔSAO vuông tại A
a: (SBD) giao (ABCD)=BD
AB vuông góc BD
SB vuông góc BD
=>góc cần tìm là góc SBA
Chọn C.
Vì SA ⊥ (ABCD) nên góc giữa đường thẳng SD và mặt phẳng (ABCD) là góc S D A ^
Tam giác SAD vuông tại A nên
a) Ta có:
⇒ (SCD) ⊥ (SAD)
Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).
Vậy (SBC) ⊥ (SAC).
b) Ta có:
c)
Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và .
Tam giác SDI có diện tích:
Chọn C.
Phương pháp: Muốn xác định góc giữa hai mặt phẳng ta thực hiện các bước sau:
Xác định giao tuyến của hai mặt phẳng đó.
Lấy 1 điểm nằm trên giao tuyến.
Dựng 2 đường thẳng lần lượt nằm trong hai mặt phẳng đi qua điểm và vuông góc với giao tuyến.
Góc giữa hai đường thẳng chính là góc giữa hai mặt phẳng.
Cách giải: Gọi O là giao điểm của AC và BD.
Đáp án A
Ta có: B là hình chiếu của B lên (ABCD)
A là hình chiếu của S lên (ABCD)
Suy ra góc tạo bởi (ABCD) là góc φ = S B A ^ .
Chọn B
Để cho gọn ta chọn a =1
Chọn hệ trục tọa độ sao cho A = O(0;0;0) và B(1;0;0), D(0;1;0) S(0;0;x) với x = SA >0
Suy ra C(1;1;0)
=> VTPT của mặt phẳng (SCD) là
=> VTPT của mặt phẳng (SBC) là
Từ giả thiết bài toán, ta có