2x 32943947387372973927392749244
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2^x+2^{x+1}+2^{x+2}+....+2^{x+2020}=2^{x+2024}-8$
$2^x(1+2+2^2+...+2^{2020})=2^{x+2024}-8$
$2^x(2+2^2+2^3+...+2^{2021})=2^{x+2025}-16$
$\Rightarrow 2^x(2+2^2+2^3+...+2^{2021})- (2^x(1+2+2^2+...+2^{2020}))=2^{x+2025}-16-(2^{x+2024}-8)$
$\Rightarrow 2^x(2^{2021}-1)=2^{x+2025}-2^{x+2024}-8$
$\Rightarrow 2^x(2^{2021}-1)=2^{x+2024}(2-1)-8$
$\Rightarrow 2^{x+2021}-2^x=2^{3+2021}-2^3$
$\Rightarrow x=3$
a)2x( 2x-1) -(2x-1)
=(2x-1)(2x-1)
=(2x-1)2
b)2x( 4x + 2x + 1) - ( 4x + 2x +1)
=(2x-1)(4x+2x+1)
=(2x-1)(6x+1)
a) \(2x\left(2x-1\right)-\left(2x-1\right)=\left(2x-1\right)\left(2x-1\right)\)
b) \(2x\left(4x+2x+4\right)-\left(4x+2x+4\right)=\left(2x-1\right)\left(4x+2x+4\right)\)
Mik làm cho vui thôi chứ chẳng ai T mik đâu
\(\frac{2x+3}{2x+1}-\frac{2x+5}{2x+7}=\frac{1-6x^2+9x-9}{\left(2x+1\right)\left(2x+7\right)}\)
\(\Leftrightarrow\frac{\left(2x+3\right)\left(2x+7\right)-\left(2x+5\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x+7\right)}=\frac{1-6x^2+9x-9}{\left(2x+1\right)\left(2x+7\right)}\)
\(\Rightarrow\left(2x+3\right)\left(2x+7\right)-\left(2x+5\right)\left(2x+1\right)=1-6x^2+9x-9\)
\(\Leftrightarrow4x^2+20x+21-4x^2-12x-5=1-6x^2+9x-9\)
\(\Leftrightarrow8x-16=1-6x^2+9x-9\)
\(\Leftrightarrow8x-16-1+6x^2-9x+9=0\)
\(\Leftrightarrow6x^2-x-8=0\)
Tự làm nốt nha
Trl
-Bạn chuyên toán thcs làm đúng r nhé !~
Học tốt
nhé bạn ~