K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

cái này k là toán thì là j

1 tháng 5 2020

100-79=

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM vừa là đường cao vừa là đường phân giác

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

b: Ta có: ΔAHK cân tại A

mà AM là đường phân giác

nên AM là đường trung trực của HK

a: Xét ΔABI vuông tại I và ΔACI vuông tại I có

AI chung

BI=CI

Do đó: ΔABI=ΔACI

Suy ra: AB=AC

5 tháng 11 2021

cảm ơn bạn nhiều

29 tháng 12 2015

Tui không vẽ hình đâu nha!

a) Xét Tam giác AMB = Tam giác AMC

Có: BM = MC ( M là trung điểm của BC)

Góc AMB= Góc AMC = 90 độ ( MA là đường trung trực của BC)

      AM chung 

=> Tam giác AMB = Tam giác AMC

b) Xét Tam giác AHM và Tam giác AKM

có: góc HAM = góc KAM ( vì  tg AMB = tg AMC)

      AM chung 

góc AHM=góc AKM

=> Tg AHM = Tg AKM

=> AH = AK (2 cạnh tương ứng)

c) Chưa nghĩ ra luôn T_T

 

15 tháng 8 2019

A B C M H K E F 1 2 I

a) * Vì tam giác ABC cân tại A nên đường cao đồng thời là đường trung tuyến  ( t/c ) 

=> AM là đường trung tuyến ứng với cạnh BC 

=> M là trung điểm của BC   => MB = MC = 1/2 BC

b)-Vì tam giác ABC cân nên góc B = góc C 

Vì MH vuông góc AB, MJ vuông góc AC nên \(\widehat{MHB}=90^o;\widehat{MKC}=90^o\)

Xét tam giác MHB và tam giác MKC có : 

góc MHB = góc MKC ( =90 độ ) 

MB = MC ( cm ở câu a ) 

góc B = góc C (cmt ) 

Suy ra : \(\Delta MHB=\Delta MKC\) ( cạnh huyền - góc nhọn )

=> MH = MK ( cặp cạnh tương ứng ) 

* Gọi I là giao điểm của AM và HK 

Vì tam giác MHB = tam giác MKC ( cmt ) 

=> BH = CK ( cặp canh t/ư) 

Mà AB = AC ( tam giác ABC cân tại A )

=> AB - BH = AC - CK 

=> AH = AK 

=> Tam giác AHK cân tại A ( d/h ) 

Vì tam giác ABC cân tại A nên đường cao đồng thời là đường phân giác 

=> AM là tia phân giác của góc BAC 

Hay AI là tia phân giác của góc BAC 

- Vì tam giác AHK cân nên phân giác đồng thời là đường cao, đường trung tuyến  (t/c) 

=> AI là đường cao đồng thời là trung tuyến của tam giác AHK 

=> AM vuông góc HK tại I  và I là trung điểm của HK 

=> AM là đường trung trực của HK ( d/h ) 

c ) * Vì MH vuông góc AB tại H, E thuộc MH nên AM vuông góc AB tại H

Mà H là trung điểm EM 

=> AB là đường trung trực EM 

=> AE = AM ( t/c ) 

Tương tự : AC là đường trung trực của MF 

=> AF = AM  (t/c) 

Suy ra : AE = AF ( = AM )

=> Tam giác AEF cân tại A ( d/h ) 

15 tháng 8 2019

Câu d ) Bạn gọi O là giao điểm của EF với AM 

C/m : tam giác AEO = tam giá AFO 

=> EO = OF

Tiếp tục sử dụng tính chất đặc biệt của tam giác cân như mấy câu trên là ra !!

P/s: Mk k giỏi Hình như giải dài dòng, bn thông cảm nhé

a: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có

MB=MC

\(\widehat{MBH}=\widehat{MCK}\)

Do đó: ΔBHM=ΔCKM

Suy ra: MH=MK

b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

MH=MK

Do đó:ΔAHM=ΔAKM

Suy ra: AH=AK

hay A nằm trên đừog trung trực của HK(1)

ta có: MH=MK

nên M nằm trên đường trug trực của HK(2)

Từ (1)và (2) suy ra AM là đường trung trực của HK

d: Ta có: \(\widehat{DBC}+\widehat{ABC}=90^0\)

\(\widehat{DCB}+\widehat{ACB}=90^0\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{DBC}=\widehat{DCB}\)

=>ΔDBC cân tại D

=>DB=DC

hay D nằm trên đường trung trực của BC(3)

Ta có: AB=AC
nên A nằm trên đường trung trực của BC(4)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(5)

Từ (3), (4) và (5) suy ra A,M,D thẳng hàng