P/m-1=m+n/P.tim m va n la so tu nhien va P la so nguyen to.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a bằng ƯC [ m, mn + 8 ].
Ta có : m chia hết cho a [ m là lẻ suy ra a cũng là lẻ ].
Suy ra : mn chia hết cho a.
Từ đó , ta lại có: mn + 8 chia hết cho a và mn + - mn chia hết cho a.
Từ đó, ta thấy 8 sẽ chia hết cho a
=> a thuộc Ư [8]= {1,2,4,8}
Vì a là lẻ nên a = 1;Ư[mn,mn+8] = 1.
Và vì thế ta biết được m và mn + 8 là 2 số nguyên tố cùng nhau.
Gọi \(d=ƯCLN\left(m,m.n+8\right)\)
\(\Rightarrow\left\{\begin{matrix}m⋮d\\m.n+8⋮d\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}m.n⋮d\\m.n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(m.n+8\right)-\left(m.n\right)⋮d\Rightarrow8⋮d\)
\(\Rightarrow d\in\left\{1;2;4;8\right\}\) ; Mà m là số lẻ \(\Rightarrow d=1\RightarrowƯCLN\left(m,m.n+8\right)=1\)
Vậy ...
Gọi a bằng ƯC ( m , mn + 8 )
Ta có: m chia hết cho a ( m lẻ => a lẻ )
=> mn chia hết cho a
Lại có: mn + 8 chia hết cho a
=> mn + 8 - mn chia hết cho a
=> 8 chia hết cho a
=> a ∈ Ư ( 8 ) = { 1 ; 2 ; 4 ; 8 }
Vì a lẻ
=> a = 1
=> ƯC ( mn ; mn + 8 ) = 1
=> m và mn + 8 là hai số nguyên tố cùng nhau.
Bài 1: Ký hiệu (abcd) là số tự nhiên có 4 chữ số.
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d
Vậy 1111.a + 111.b + 11.c + d = 4321
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10)
+ Nếu a > 3 => vế trái > 4321
Vậy a = 3 => 111.b + 11.c + d = 988
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10)
+ Nếu b > 8 => vế trái > 988
Vậy b = 8 => 11.c + d = 100
+ Nếu c < 9 => d > 11 (vô lý)
Vậy c = 9; d = 1
=> (abcd) = 3891
Gọi ƯCLN(3n+4;n+1) là d.
=>3n+4 chia hết cho d và n+1 chia hết cho d.
=>3.(n+1) chia hết cho d
=>3n+4 ___________d và 3n+3 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>ƯCLN(3n+4;n+1)=1 nên 2 số 3n+4 và n+1 là 2 số nguyên tố cùng nhau.
Câu 2:
a = 2 ; b = 1
Câu 3:
N={ 1;2;3;4;5;6;10;12;15;20;30;60}
Có 12 phần tử.
Câu 4: Chữ số tận cùng của 71993 là 7
Gọi 14n+3 và 21n+4 =d (d thuộc N)
=>14n+3 và 21n+4 chia hết cho d
=>3(14n+3) - 2(21n+4) =1 chia hết cho d
=> d=1
Vậy 14n+3 va 21n+4 la so nguyen to cung nhau
Gọi UCLN(14n+3,21n+4)=d
Ta có:14n+3 chia hết cho d\(\Rightarrow3\left(14n+3\right)\) chia hết cho d\(\Rightarrow42n+9\) chia hết cho d
21n+4 chia hết cho d\(\Rightarrow2\left(21n+4\right)\) chia hết cho d\(\Rightarrow42n+8\) chia hết cho d
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)\)chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow d=1\) nên suy ra ĐPCM
Vậy ........................